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Abstract—In recent years, the growing complexity of database
management systems (DBMSs) and the proliferation of SQL
dialects have created significant challenges for database migra-
tion, federation, and integration. These challenges arise from
the disparities between SQL dialects across different DBMSs,
hindering seamless communication and system interoperability.
SQL translation, the process of converting SQL queries from a
source dialect DBMS to a target dialect DBMS, plays a crucial
role in addressing these challenges. To facilitate this process,
we introduce DLBENCH, the first comprehensive benchmark
designed to evaluate the SQL translation capabilities of Large
Language Models (LLMs). The benchmark includes two datasets:
BIRDTRANS, which covers real-world database query scenarios
across seven DBMSs, and BUTTERTRANS, which spans a broader
spectrum of SQL types and encompasses extensive DBMS dialect
features. We collect high-quality databases and SQL statements,
applying a rigorous multi-step cleaning process that ensures
data quality through SQL92-based checks and dialect-specific
parser validation. Additionally, both LL.M-based and human
annotations are used to guarantee the correctness and complete-
ness of the dataset. We demonstrate the utility of DLBENCH
through extensive experiments, which show that the benchmark
effectively evaluates the SQL translation ability of LLMs. The
results highlight the potential of LLMs for SQL translation tasks
and provide insights into areas for further improvement.

Index Terms—SQL translation, SQL dialect, Benchmark

I. INTRODUCTION

Over the past several decades, the realm of database man-
agement has grown markedly more intricate. This increased
complexity stems not only from the expanding array of spe-
cialized Database Management Systems (DBMSs) designed
for diverse workloads but also from the proliferation of
mutually incompatible SQL dialects. Such disparities hinder
migration and federation efforts, effectively binding users to
their initial DBMS regardless of potential shortcomings in
cost, performance, or specific functionalities. Facilitating SQL
translation between these diverse dialects would not only
simplify migrations but also enable the development of so-
phisticated federated systems that intelligently route workload
segments to the most efficient or cost-effective DBMS [[1]-[5].
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SQL translation is a difficult task due to the inherent
complexity and subtle differences in syntax and semantics
among various SQL dialects. For example, as shown in Fig-
ure [I] translating a CREATE TRIGGER statement between
different DBMSs requires considering the distinct implemen-
tations across systems: MariaDB uses if-else statements
for conditionals, SQLite employs the WHEN clause together
with the UPDATE statement to achieve similar functionality,
and PostgreSQL necessitates the declaration of an additional
function to create a trigger. Although CREATE TRIGGER is a
common feature in most relational DBMSs, there remain sub-
stantial differences in the grammar across different systems.
A conventional solution involves translating queries across
DBMSs using rule-based tools such as the SQLGLOT parser.
These rule-based tools [3]], [[6] largely automate the translation
process; however, they do not always perform well, leaving
developers to manually convert segments of code that the tools
fail to handle. For instance, during the translation of the BIRD
benchmark [7] from SQLite to BigQuery, approximately 80%
of the queries encountered errors using the SQLGLOT parser.

In recent years, Large Language Models (LLMs) have
demonstrated potential in code generation and code translation.
Existing studies [[1]], [2], [8] show that models such as GPT-
4 [9]] and Bard [10] possess impressive code-writing capabil-
ities, positioning them as promising candidates for tackling
SQL translation challenges. However, current evaluation prac-
tices for LLM-based SQL translation remain overly simplistic.
For example, MALLET [2] and SEDAR [8|] assess success
based merely on whether the translated SQL statement from
a known benchmark (e.g., TPC-DS [11]—a decision-support
performance benchmark) executes without error in the target
DBMS. More recently, CRACKSQL [[12]] takes a step forward
by explicitly considering the consistency of query results
before and after translation. Nonetheless, execution-driven
evaluation still has two key limitations. First, it overlooks
both semantic equivalence and dependency integrity. Two
queries may produce slightly different outputs across DBMSs
(e.g., differences in date—time formatting between MySQL and
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[ Translate Create Trigger Statement Between different DBMSs ]

CREATE TRIGGER t AFTER UPDATE ON account
FOR EACH ROW
WHEN NEW.amount < 0 BEGIN

UPDATE account SET amount =0

WHEN rowid = OLD.rowid;
%(\)l_nc

FOR EACH ROW
BEGIN
IF NEW.amount < 0 THEN
SET NEW.amount = 0;
END IF;
END;

END;

BJMOHCIDB ;

CREATE TRIGGER t AFTER UPDATE ON account CREATE FUNCTION trigger_f()

RETURN TRIGGER LANGUAGE PLPGSQL

CREATE TRIGGER t AFTER UPDATE ON account FOR

EACH ROW
DURE trigger_f() ((’l“); PostgreSQL

XECUTE PROC

Fig. 1: Translate the CREATE TRIGGER statement in different DBMSs.

-- PostgreSQL Schema and instances

-- MySQL Schema and instances
CREATE TABLE users (
id INT PRIMARY KEY,
username VARCHAR(50),
email VARCHAR(100),
created_at TIMESTAMP

)i

INSERT INTO users (id, username, email, created_at) VALUES

(2, 'Bob', 'bob@example.com', '2023-01-02 11:00:00’),

)example.com', '2023-01-01 10

Annotators create:
{ Dialect Annotate
' dbms": "MysQL",
": "PostgreSQL",
query": "SELECT * FROM users LIMIT 10;", *
ry"': "SELECT * FROM users FETCH FIRST 10 ROWS ONLY;",
: True,

}
Fig. 2: The annotations for SQL translation task.

PostgreSQL) yet convey the same intent, or a translated query
may yield the right answer on a test dataset while silently
breaking schema constraints, such as incorrectly translating
MySQL’s “AUTO_INCREMENT” into a plain integer with-
out PostgreSQL’s “SERIAL”, or omitting integrity rules like
“FOREIGN KEY” references and “UNIQUE” checks. In both
cases, execution-based evaluation such as CRACKSQL [12]
would fail to capture these semantic issues. Second, it over-
looks the breadth and variability of dialect-specific constructs
encountered in real-world SQL, leading to an incomplete
assessment of model capability.

To better reflect realistic SQL translation scenarios en-
countered in practical development, we propose a new task
formulation for the SQL translation problem in Section
Specifically, to overcome the first limitation, our formulation
introduces two additional constraints: semantic equivalence
and dependency integrity. These constraints ensure that the
translated query not only produces semantically equivalent
results as the source query but also preserves the logical
relationships among database objects, such as foreign key
dependencies.

To support this task and measure the SQL translation
capabilities of LLMs, we present DLBENCH, a comprehensive
SQL translation benchmark comprising 6,402 translation tasks,
supporting seven different DBMSs, and covering 9,320 SQL
dialects, as summarized in Table [T} By spanning a broad range
of DBMSs and dialect-specific features, DLBENCH directly
addresses the second limitation, ensuring that evaluations
reflect not only execution feasibility but also the diversity and
variability of real-world SQL constructs. DLBENCH is the first

innovative benchmark for SQL translation that reflects real-
world scenarios by translating statements from one dialect
DBMS to another. To make DLBENCH more suitable for
evaluation and training, we have meticulously annotated each
SQL translation task. As shown in Figure 2] given a database,
our corpus creates and annotates complex SQL translation
tasks, involving the translation of source queries in one SQL
dialect to target queries in another SQL dialect. For each task,
we annotate the position of the dialects and include external
knowledge, which helps the model understand dialect-specific
keywords and ensures accurate translation. Additionally, we
provide an equivalence label to guarantee that both the syntax
and semantics are preserved across dialects, with more detailed
information provided in Section Our annotations also
include relevant schema details and runtime environment spec-
ifications, outlining the logical structure of database objects,
such as tables, columns, indexes, functions, and constraints.
This comprehensive information ensures that the translated
SQL queries can be executed correctly in the target DBMS.

DLBENCH includes two datasets to evaluate the translation
capability of LLMs in different scenarios: the BIRDTRANS
dataset, which covers popular DBMSs and real-world database
query scenarios, and the BUTTERTRANS dataset, which spans
a broader spectrum of SQL types and encompasses extensive
DBMS dialect features. We construct our benchmark from two
primary sources: BIRDTRANS is generated by augmenting the
original BIRD text-to-SQL dataset, whereas BUTTERTRANS
is collected from popular DBMS test cases to cover a broader
range of dialect features. We begin by collecting high-quality
databases and SQL statements. Each statement then undergoes
a multi-step cleaning and filtering process, which includes
SQL92-based checks to verify the presence of dialect-specific
syntax, as well as dialect-specific parser validation to ensure
data quality. Finally, both LLM-based and human annotations
are applied to guarantee the correctness and completeness of
the data.

In addition to benchmark construction, we implement an au-
tomated translation—execution—evaluation pipeline and intro-
duce a novel evaluation framework that includes both content
matching-based and execution-based metrics. We introduce
a new Dialect Matching (DM) metric for assessing dialect-
specific constructs, and adapt Exact Matching (EM) and
Execution Accuracy (EX) from Text-to-SQL evaluation [[13].
The content matching—based metrics DM and EM evaluate
structural and syntactic alignment of translated SQL with
the ground truth—focusing on dialect-specific features and



exact matches—while the execution-based metric EX verifies
correctness by comparing execution results of translated and
ground-truth statements on a database.

We conducted experimental evaluations of SQL translation
using DLBENCH with seven advanced LLMs: four general-
purpose models (one open-source and three closed-source) and
three code-specific models. The results show that the perfor-
mance of LLMs in SQL translation is far from satisfactory.
The best-performing language model, GPT-40, only achieved
a score of 0.70 on the EX metric. Subsequently, we explored
two enhanced prompting strategies—few-shot prompting and
knowledge-augmented prompting—which led to modest im-
provements in performance. However, the model’s overall
effectiveness still falls short of the requirements for reliable
automatic SQL translation.

Our contributions can be summarized as follows:

o We introduce DLBENCH, the first comprehensive bench-
mark for evaluating the SQL translation capabilities
of LLMs, featuring over 6,402 translation tasks across
seven DBMSs and 9,320 SQL dialects. This benchmark
enables robust and realistic assessment of LLM perfor-
mance in practical SQL translation scenarios.

« Besides introducing DLBENCH, we also develop a sys-
tematic evaluation design including translation-execution-
evaluation pipeline and three progressive metrics. This
evaluation design provides a reference for future SQL
translation assessments.

e We conduct extensive experiments that yield several
instructive findings. The results show that LLMs’ trans-
lation performance still falls well short of expectations.

e Our benchmark repository is publicly available at
https://dlbenchll.github.io/, providing a valuable resource
for future research on SQL translation tasks and enabling
further advancements in LLM-based SQL translation.

II. TASK DEFINITION

In this section, we define a SQL translation task that
addresses key limitations of prior work and more accurately
reflects real-world requirements. Unlike most existing ap-
proaches that consider a translation successful if it merely
executes without error on the target DBMS, our task for-
mulation evaluates models on both syntactic correctness and
semantic fidelity. This stricter definition ensures that models
can only succeed when they genuinely understand the seman-
tic meaning of dialect-specific features, rather than relying
on pattern matching or memorization. The SQL translation
task aims to convert a SQL statement from a source dialect
DBMS D; (e.g., MySQL) to a target dialect DBMS D, (e.g.,
PostgreSQL), while preserving both syntactic validity and
semantic equivalence. This task requires formal specification
of its input-output relationships and equivalence constraints,
as detailed below.

A. Input-Output Space

Let S denote the universal set of valid SQL statements,
partitioned into dialect-specific subsets S1,Ss, ..., Sy corre-

sponding to k distinct SQL dialects in D = {Dy, Ds, ..., Dy}
The translation process operates within a database context
C = (X,7), where X represents the database schema (tables,
columns, data types, and constraints) and Z denotes the
concrete dataset instance containing actual data rows.

The translation function 7 : S; xD; xC — S; maps a source
statement Sy € S; from dialect DBMS D; to a target statement
S; € §; in dialect DBMS Dy, conditioned on the provided
database context. Here, S; and Sj represent the source and
target dialect subspaces respectively.

B. Semantic Equivalence Constraints

A valid translation S; of a source statement S, under
the database context C = (3,Z) must satisfy three core
constraints. First, it must be syntactically valid in the target
dialect DBMS, as verified by a dialect-specific parser:

Parsable(S;,D;) = T (1)

Second, the translated query must produce execution results
identical to the source query when applied to the database
context C:

Execute(S;, C, D;) = Execute(St, C, Dy) 2)

where = denotes strict equality of result sets, including
preservation of row order and duplicates when explicitly
specified by the query. Although strict equivalence is required,
practical translators may allow datatype-driven relaxations
that preserve semantics while differing in representation. For
example, MySQL’s DATETIME is formatted as $Y-%m-%d
$H:%M:%S (e.g. 2008-04-30 00:00:00), whereas Post-
greSQL’s TIMESTAMP uses $Y-%m-%d $H:%M:%S.%f
(e.g. 2008-04-30 00:00:00.000000); since both de-
note the same instant, they are treated as approximately equiv-
alent. We annotate these cases with the SemanticEquivalent
annotation (see Section [II).

Third, the translation must preserve all functional depen-
dencies and integrity constraints implied by the schema :

ConstraintsPreserved (3, S;) = T, 3)

For instance, MySQL’s AUTO_INCREMENT columns should
map to PostgreSQL’s SERIAL type rather than generic integer
sequences. Including ¥ in the formalism captures SQL’s re-
liance on metadata—column types determine which functions
can be applied, and primary/foreign keys or check constraints
guide the optimizer’s execution plan. Including the instance
T accounts for data-dependent behaviors (for example, locale-
specific string comparisons or NULL handling).

III. DLBENCH

In this section, we introduce the construction of DLBENCH,
the benchmark meticulously designed to evaluate the transla-
tion capabilities of LLMs in SQL translation. Figure [3] illus-
trates the entire process involved in building our benchmark,
starting from the collection of databases and SQL statements
to the final SQL annotation and quality control steps. More
details will be introduced in the following subsections.
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Fig. 3: The annotation process of our DLBENCH benchmark.

A. Benchmark Construction

(1) Database and Statements Collection. The first step
in constructing DLBENCH is collecting high-quality databases
and SQL statements to prepare for subsequent SQL translation
tasks. We leverage two primary sources for this collection:
the popular Text-to-SQL benchmark BIRD and widely-used
DBMS test suites. BIRD [[7] covers a variety of cross-domain
query scenarios, including diverse application domains such as
e-commerce, finance, and healthcare, and contains a significant
number of queries in the SQLite dialects. We also collect
popular DBMS test suites, including those for MySQL
and PostgreSQL [15], which cover a wide range of SQL
dialects and encompass various key SQL features, such as
dialect-specific syntax and variations in Data Manipulation
Language (DML) statements, Data Control Language (DCL)
commands, and Transaction Control Language (TCL) oper-
ations. These sources provide a diverse collection of SQL
statements, ensuring that DLBENCH covers a broad spectrum
of real-world scenarios and dialects.

(2) Data Cleaning and Filtering. Once the SQL statements
are collected, they undergo a multi-step data cleaning and fil-
tering process. First, we filter out SQL statements that conform
to the SQL-92 standard to ensure that our SQL translation
task focuses on dialect-specific translation rather than fully
equivalent syntax. Specifically, we use an ANTLR parser
based on the ANSI Standard to parse the statements. If the
statements fail the parsing process, we retain them for further
analysis. Additionally, we check the syntax with a dialect-
specific parser and verify DBMS executability. It is worth
noting that although SQL-92 provides a common baseline,
standard-compliant queries may still behave differently across
DBMSs. To assess this risk, we conduct a sampling analysis
by selecting 100 SQL-92—compliant queries and testing them
across seven representative DBMSs (See Table[l). All sampled
cases exhibit consistent behavior, and we therefore regard such
discrepancies as statistically insignificant. This ensures that we

can efficiently filter out queries that are valid for the specific
DBMSs and can be executed properly. Finally, after these
filtering and verification steps, we obtain a refined set of SQL
statements that are ready for translation and annotation.

(3) Benchmark Construction. In this step, we utilize the
commercial model GPT-4o0-mini to assist in translating SQL
queries across DBMSs. We build an automated environment
in which GPT-40-mini receives the source and target di-
alect identifiers along with the necessary schema definitions,
generates the corresponding SQL for the target DBMS, and
automatically executes it. Finally, human experts review the
execution results to verify that the translated queries are
semantically equivalent to the originals. During the translation
process, we also record the database context in which each
query is executed, ensuring that the context of the translation
is preserved. Based on our trials, approximately 35% of the
statements were successfully translated using the model. In
addition to automatic translation, human experts are involved
to manually translate queries, ensuring the high accuracy
and reliability of the benchmark. For queries that were not
successfully translated, the experts manually translated them.
To ensure expert quality, we recruit trained domain specialists
with substantial experience in database development and SQL
dialects. Before participating in the main construction phase,
each expert completes a qualification task consisting of 20
SQL translation items sampled from known dialect transforma-
tions. Only experts who achieve at least 90% agreement with
the reference answers are included in the final pool. Finally,
we select three experts with over three years of database
development experience to review all translations.

Our translation process strictly adheres to the constraints
outlined in Section [[I-B] During the translation, we encoun-
tered cases where translation was not possible. A major reason
for this was the differing support for DBMS-specific features.
When the target DBMS does not support features present
in the original query, such as unsupported functions, the



SQL translation can result in an executable query failure. For
example, MariaDB provides certain geospatial functions that
are unavailable in other DBMSs. These issues, though rare,
must be accounted for during the translation process. After
the combined efforts of ChatGPT and human translators, we
successfully collected a total of 6,402 translation tasks, with
the entire process requiring 150 man-hours.

(4) SQL Annotation. In this step, three experienced experts
manually annotate SQL queries to capture key dialect-specific
features. Two primary annotators are selected based on their
extensive experience and familiarity with the SQL dialects
involved. These annotators are responsible for independently
labeling each translation instance, following a detailed guide-
line. In cases of disagreement, a third expert served as an ad-
judicator, reviewing both annotations and consulting relevant
documentation to determine the final label. This triadic setup
ensures both domain expertise and annotation consistency.
To evaluate annotation reliability, we measure inter-annotator
agreement using Cohen’s kappa, which accounts for agreement
due to chance. The overall kappa score between the two
primary annotators is 0.92, indicating a high level of con-
sistency and confidence in annotation quality. We label each
query with three annotations: semantic equivalent, dialect
location, and dialect knowledge. The semantic equivalent
label includes both approximate and exact equivalence, with
approximate equivalence referring to queries that produce
similar results, as discussed in Section For semantic
equivalence annotation, we do not rely solely on execution
results. Instead, experts analyze the semantics of queries
by referencing official SQL documentations and verifying
whether two queries express the same intent and yield consis-
tent behavior across DBMSs. Execution results are considered
supportive evidence but are not the sole basis for annotation.
As illustrated in Section [[I-B| even when execution outputs
differ in representation across DBMSs (e.g., differences in
date-time formatting between MySQL and PostgreSQL), such
cases are annotated as approximately equivalent since they pre-
serve the same underlying semantics. This explicit semantic
annotation ensures that equivalence is defined at the logical
level rather than being tied to a specific DBMS execution,
distinguishing our benchmark from existing ones [2], [[12] that
judge equivalence primarily by execution behavior. The dialect
location annotation identifies specific dialect features, such as
unique keywords “LIMIT 10” in Figure [2] within the query.
In addition, we annotate each dialect feature with external
knowledge extracted from official SQL documentation to give
the model a comprehensive understanding of dialect-specific
behavior and functionality. For any gaps in the documentation,
we leverage GPT-40-mini to generate the missing information.
For example, we annotate MySQL’s dialect feature “NULLIF”
as follows:

Feature: NULLIF(exprl, expr2)

Explanation: The NULLIF function returns NULL
if exprl equals expr2. Otherwise, it returns the value
of exprl. This function is equivalent to the following

CASE expression: CASE WHEN exprl = expr2
THEN NULL ELSE exprl END. The return value of
NULLIF has the same data type as the first argument
(exprl).

Example: mysqgl> SELECT NULLIF (1, 1);

These annotations ensure that the model fully understands
the context and behavior of each dialect feature, facilitating
more accurate translations between SQL dialects. The anno-
tation process took 150 man-hours to complete.

(5) Quality Control. Finally, we rigorously review each
translation task to ensure compliance with predefined quality
standards. Three domain experts conduct comprehensive val-
idation, verifying syntactic and semantic correctness through
dialect-specific parsers, ensuring result consistency between
source and translated SQL queries across DBMSs under
identical datasets, and confirming accurate handling of dialect-
specific features such as function replacements or syntax
adaptations. Identified discrepancies—including unsupported
functions, logic deviations, or syntax mismatches—are system-
atically resolved through re-translation or manual adjustments,
thereby ensuring the reliability and practical utility of the
benchmark.

B. Dataset Statistics

Selected DBMSs. DLBENCH comprises seven distinct
relational DBMS, as summarized in Table Our source
SQL statements are drawn from the SQLite dialects of the
BIRD benchmark [7] and the official MySQL [14] and
PostgreSQL [15] test suites. For translation targets, we choose
six widely used, large-scale open-source relational DBMSs:
MySQL, PostgreSQL, MariaDB, MonetDB, DuckDB, and
ClickHouse—as our translation targets. These systems were
selected because they (1) enjoy broad community adoption,
(2) adhere closely to standard SQL syntax while exhibiting
realistic dialectal variations, and (3) provide comprehensive,
publicly available SQL documentation.

TABLE I: Key characteristics of selected DBMSs

DBMS GitHub Stars ~ DB-Engine  First Release Role
MySQL 8.6K 2 1995 Both
PostgreSQL 16.1K 4 1989 Both
SQLite 6.5K 10 2000 Source
MariaDB 4.6K 15 2009 Target
MonetDB 375 135 2004 Target
DuckDB 23.6K 57 2018 Target
ClickHouse 37.2K 37 2016 Target

Statistics and Dialect Diversity. Table [lI] presents the
statistics of two datasets included in DLBENCH: BIRDTRANS
and BUTTERTRANS. BIRDTRANS covers 3,206 translation
tasks across 4,669 dialect variants, while BUTTERTRANS
includes 3,196 tasks spanning over 4,651 dialect features.
Each dataset supports translation to six popular DBMSs, with
varying average token lengths and statement lengths. We
also followed the SQL standardization ISO/IEC 9075 [16] to
classify statements in BUTTERTRANS dataset. As shown in
Figure 4] DQL dominates, followed by DDL and DML. Other



TABLE II: Dataset Specifications

Target Task Dialect Avg. Avg.
Dataset Source DBMS DBMS Numbers  Numbers  Tokens Length
L MySQL, PostgreSQL,
BIRDTRANS Te’]‘;IEDS%LQLDigS“ MariaDB, MonetDB, 3,206 4,669 81.17  236.97
DuckDB, ClickHouse
. MySQL, PostgreSQL,
BUTTERTRANs  Lopular DBMS Test Suites yr, g MonetDB, 3,196 4,651 2838 66.22

(MySQL and PostgreSQL)

DuckDB, ClickHouse

3000 DQL: Data Query Language

DDL: Data Definition Language
DML: Data Manipulation Language
DCL: Data Control Language

TCL: Transaction Control Language
ML: Miscellaneous Language

2619
2500
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1500
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Fig. 4: Distribution of SQL statement types across individual
translation tasks in BUTTERTRANS dataset.

categories such as DCL, TCL, and miscellaneous types appear
less frequently but remain essential for comprehensive dialect
coverage. This distribution reflects the syntactic and semantic
diversity of DLBENCH, presenting substantial challenges for
LLM-based SQL translation.

IV. EVALUATION METRICS

This section presents metrics for evaluating SQL translation
quality, covering both content matching-based and execution-
based criteria. We propose a new Dialect Matching (DM)
metric to measure translation of dialect-specific constructs, and
adapt the Exact Matching (EM) and Execution Accuracy (EX)
metrics as originally defined for Text-to-SQL evaluation [13].
We will release the official evaluation script along with our
corpus so that the research community can share the same
evaluation platform.

A. Content Matching-based Metrics

Dialect Matching (DM) evaluates the performance of the
SQL translation system by measuring how many dialect-
specific features are successfully translated from the source
dialect to the target dialect. Let

(s\Us) )

1 j#i

g =

=

i

be the set of all constructs that occur in exactly one dialect
subset S;. For any SQL statement s, define its dialect feature
set as

®(s) ={g € G| g appears in s}. (5)

For each SQL translation task n = 1,..., N, let Y" be the
groundtruth translation in the target dialect and Y™ be the
model’s predicted translation. Then, we define

Gy =2(Y")={geG|gappearsinY"} (6
red = @(Y") ={g € G| g appears in Y”} @)

Then compute for each task n:

TP, = |Gpea N G| (8)
Fp, = ‘Ggred \ th 9

FN, = |th \Ggred| (10)

Aggregating over all N tasks yields the precision and recall:

N
TP,
Ppy = Nzn_l ; (11)
anl(TPn +FP,)
N
A (12)
> n1 (TP + FNy)
and the final F; score:
2 Ppm Rpm
F = . 13
LM pM + Rou =

This metric thus captures how accurately the model translates
dialect-specific constructs from the source dialect into their
correct counterparts in the target dialect.

Exact Matching (EM) measures the percentage of ex-
amples where the predicted SQL statement is identical to
the ground truth SQL statement [13]. A predicted SQL is
considered correct only if all tokens match exactly with the
ground truth statement.

B. Execution-based Metrics

Execution Accuracy (EX) measures the proportion of
examples in the evaluation set for which the executed results
of both the predicted and ground-truth SQL statements are
identical, relative to the total number of statements. Let V,,
denote the result set executed by the n-th ground-truth SQL
Y,,, and Vn the result set executed by the predicted SQL )7”.
The EX metric is defined as:

N
1 A
EX = — KV 14
7 2KV 1) (14)

where J(+) is an indicator function, defined as:



H‘(V,V)={1’ y=v (15)

0, V£V

Execution consistency varies depending on the type of
SQL statement. For SELECT queries, execution consistency
is evaluated by comparing the result sets of the translated
queries and ground-truth queries, focusing on row order and
duplicates, where specified. For non-query statements such
as INSERT, UPDATE, and DELETE, execution consistency is
evaluated by comparing the number of affected rows between
the translated statements and the ground-truth.

V. EXPERIMENTAL SETUP

We aim to answer the following key research questions
(RQs) that explore the utility of DLBENCH for evaluating
diverse LLMs for SQL translation tasks:

1) RQ1 (Effectiveness of LLMs in SQL Translation): How
do the recent advanced general and code LLMs perform in
SQL translation?

2) RQ2 (Effectiveness of Enhanced Prompt): How do
enhanced prompts affect the performance of recent LLMs
in SQL translation?

3) RQ3 (Error Analysis): What are the main types of errors
that occur in SQL translation?

A. Models

The studied LLMs are listed in Table We eval-
vate DLBENCH using four state-of-the-art open-source
LLMs (SQLCoder [17]], codellama [18]], deepseek-coder [[19],
deepseek [20]) and three close-source models (GPT-3.5-
turbo [21]] ,GPT-4o0 [22] and Gemini-2.5-flash [23]]). Notably,
we select these models for their strong performance on SQL-
related tasks: each has been fine-tuned or pre-trained for cross-
dialect SQL generation, endowing them with advanced SQL
reasoning capabilities. Among them, Gemini-2.5-flash is not
limited to prompt-based inference but also supports tool-using
functionalities such as automatically consulting documenta-
tion, database schemas, reference implementations, or dialect-
specific resources. Our primary test subject is GPT-3.5-turbo.

TABLE III: Studied Large Language Models

Base Model Model Size
StarCoder [24] SQLCoder-7B [17] 7B
CodeLlama [18]  CodeLlama-7B-Instruct [18]] 7B
Deepseek [20] Deepseek-Coder-6.7B-Instruct [|19] 6.7B

Deepseek [20] DeepSeek-R1-Distill-Llama-8B [20] 8B
- GPT-3.5-turbo [21] -
- GPT-4o [22] -
- Gemini-2.5-flash [23] -

B. Prompting Strategies

We assess LLMs on our SQL translation benchmark using
prompt-based evaluations. Figure [5| shows the prompt template
used for our evaluation. Following the design of Pan et al. [25]],
we craft an Initial Prompt template composed of four compo-
nents: (1) System Message (2) Task Description (3) Schema

You are an expert SQL translation assistant.

System messages

Please translate the following SQL statement from
{source_dbms} to {target_dbms}, ensuring that the
resulting query is functionally equivalent to the original.
{source_query}

Task Descriptions

{source_query} schema and sample data:
{source_schema_and_data}

Schema Information

You may refer to these dialect rules and tips to guide
your translation:
{External Knowledge}

External Dialect

Knowled:
Knowledge-augmented Prompting fnowtedge

[sau Few-shot Demonstration

[Answer] Few-shot Prompting

Output only the translated SQL. Do not add any
extra commentary.

Output Constrains

Fig. 5: The prompt template for our evaluation.

Information and (4) Output Constraints. Under RQ1, we assess
model performance using the Initial Prompt alone. For RQ2,
we further investigate two enhanced prompting techniques:
few-shot prompting and knowledge-augmented prompting.

o Few-shot Prompting (FS): The technique of few-shot
prompting is widely used in both practical applications
and well-designed research, which has been proven effi-
cient for eliciting better performance of LLMs [26]]. In the
few-shot setting, we provide the model with 3 translating
examples within the prompt, aiming to improve model
performance through limited task-specific examples. To
ensure task consistency, these examples are randomly
selected from the same translation direction (e.g., MySQL
to PostgreSQL).

+ Knowledge-augmented Prompting (KA): Knowledge-
augmented prompting is widely used in code tasks to
infuse models with domain-specific information [27].
In this setup, we augment prompts with our labeled
SQL dialect knowledge to test whether extra task-specific
information improves SQL translation accuracy.

C. Experimental Environment

We perform our experiments on a workstation an 8-core
“11th Gen Intel(R) Core(TM) i7-11700@2.50GHz” processor,
64GB of memory, and NVIDIA RTX A6000 with 48GB
of VRAM running Ubuntu 22.04.1 LTS. For open-source
LLMs, we deploy a local API server based on VLLM [2§]]
which is a unified library for LLM serving and inference.
All models are not quantized and we use their original
precisions. Model temperature can control the randomness in
the generated results of models [29]. Specifically, we follow
Gu et al. [30] and set the temperature to 0.8. To mitigate
evaluation randomness, we repeat each experiment five times
under the same configuration. Following the self-consistency
strategy [31]], we select the answer with the highest consistency
across these runs, which helps reduce the impact of output
randomness. For the rest of the parameters, we use the default
settings in vVLLM, to ensure a fair comparison.



0.510.52 0.53

07
067
0.59
0.5
04 0.37
031 0.32
03 027 0.28
023 02| o,
0.2 016l .
0.14 012
0.1 0.060.070-08
0.01 I
0 —
DM EM EX

m SQLCoder
® GPT-3.5-turbo

® Codellama
® GPT-40

Deepseek-Coder
B Gemini-2.5-flash

Deepseek-R1

Fig. 6: Overall translation performance of LLMs on DL-
BENCH, covering BIRDTRANS and BUTTERTRANS in terms
of DM, EM, and EX

VI. RESULTS AND ANALYSIS

A. Effectiveness of LLMs in SQL Translation

The overall performance of the studied LLMs on DLBENCH
is shown in Figure [6] From the model perspective, GPT-40
achieves the highest overall performance, with DM = 0.52,
EM = 0.28, and EX = 0.70. Gemini-2.5-flash follows closely,
reaching DM = 0.53, EM = 0.32, and EX = 0.67. This
superiority can be attributed to its larger parameter scale and
the diversity of its pre-training corpus. Among the code-
specialized models, Deepseek-Coder leads with EX = 0.37,
whereas SQLCoder performs worst across DM, EM, and EX.
From the metrics perspective, EM remains uniformly low
across all models, indicating that EM is overly sensitive to
syntactic details and often fails to recognize semantically
equivalent queries expressed differently. The gap between DM
and EX varies across models: Deepseek-Coder actually sur-
passes its DM in EX (0.37 vs. 0.27), demonstrating its ability
to generate executable variants that diverge from strict dialect
patterns and reflect a diversity of valid dialect mappings. In
contrast, Deepseek-R1 shows a larger drop (A = 0.11) and
CodeLlama a smaller one (A = 0.01), revealing that even
when dialect recognition succeeds, semantic usage can still
fail. Figure Ekb) illustrates such an example, where the model
applies the “ROW” function correctly but overlooks the required
type conversion.

Finding 1: Among all evaluated LLMs, GPT-40 achieves
the highest translation performance. Furthermore, DM
and EX serve as more informative indicators of SQL
translation quality than EM.

Table [Vl and Table [V] detail the evaluation results of
each model on different datasets (BIRDTRANS and BUT-
TERTRANS) and various target DBMSs. From the dataset
perspective, most models achieve a moderate improvement in
EX on BUTTERTRANS; for instance, GPT-3.5-turbo’s EX on
MySQL increases from 62.71% on BIRDTRANS to 76.47%
on BUTTERTRANS. This gap highlights the models’ greater
challenges in processing deeply nested, lengthy SQL queries in

BIRDTRANS, as opposed to the more diverse yet concise state-
ments encountered in BUTTERTRANS. From the target DBMS
perspective, MySQL, PostgreSQL, MariaDB and DuckDB
consistently yield the highest EX scores, while MonetDB
and ClickHouse remain the most challenging. For example,
on BUTTERTRANS, GPT-3.5-turbo achieves an EX score of
76.47% when translating to MySQL, but only 48.28% when
translating to MonetDB. Similarly, GPT-40 drops from 53.45%
EX on PostgreSQL to 42.84% on ClickHouse, and Gemini-
2.5-flash decreases from 97.22% on MariaDB to 48.65%
on MonetDB, confirming the consistent difficulty of these
DBMSs across different models. These variations underscore
differences in dialect support across DBMS platforms.

Finding 2: Models generalize better to shorter, varied-
dialect queries than to long, complex real-world SQL,
and DBMS-specific features drive significant performance
differences, with MySQL/PostgreSQL/MariaDB/DuckDB
easiest and MonetDB/ClickHouse hardest.

B. Effectiveness of Enhanced Prompt

In RQ2, we investigate two prompting strategies, FS and
KA, to evaluate their impact on SQL translation performance.
Due to space constraints, we only show the impact of GPT-
3.5-turbo on EX metric. Similar observations hold for other
LLMs and can be found in our released artifact.

As shown in Figure |/} both FS and KA prompting strategies
improve the SQL translation performance. Specifically, on the
BIRDTRANS dataset, the improvement is particularly pro-
nounced for DuckDB and ClickHouse. In these two systems,
KA demonstrates a clear advantage, achieving significantly
higher EX scores compared to both IP and FS. Compared
to IP, KA improves EX by 15% on DuckDB and 22% on
ClickHouse; compared to FS, the improvements are 5% and
5%, respectively. The only exception is PostgreSQL in the
BIRDTRANS dataset, where KA causes a slight performance
drop. A possible reason is that the model already possesses
a strong understanding of the basic PostgreSQL dialect, and
the addition of external knowledge or longer context may
introduce interference rather than benefits. However, this phe-
nomenon is not observed in the more complex dialects of the
BUTTERTRANS dataset, where KA consistently demonstrates
clear advantages. Under the BUTTERTRANS dataset, KA again
leads to consistent EX gains across all target DBMSs. Com-
pared to IP, KA improves EX by 8% on MySQL, 7% on
PostgreSQL, 14% on MariaDB, 10% on MonetDB, 9% on
DuckDB, and 17% on ClickHouse; relative to FS, the gains
are 14%, 7%, 10%, 7%, 8%, and 15%, respectively. These
results demonstrate that knowledge augmentation effectively
enhances translation accuracy.

Finding 3: Both enhanced prompting strategies improve
translation performance to varying degrees, with the
knowledge-augmented prompting (KA) showing greater
potential overall.
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C. Error Analysis

To gain a comprehensive understanding of SQL translation
errors, we conduct a fine-grained analysis on 300 randomly
sampled examples, and systematically categorize the observed
errors following the principles of open coding to uncover
recurring patterns and underlying causes. Although not de-
termined through formal statistical power analysis, the sample
size aligns with conventions in prior studies on code tasks (e.g.
SPIDER2.0 [33], UNITRANS [34])). This sample size allowed
us to identify stable and recurring error patterns across models.
Figure [§] illustrates the classification results. The errors are
grouped into four major categories: E1 (Syntax Errors), E2
(Semantic Errors), E3 (Logic Errors), and E4 (Others). Limited
by the space, we provide only three representative examples
in Figure [9]

El. Syntax Errors (46%) are typically caught during
parsing. We identify five common subtypes: Keyword Error,
where reserved keywords are used incorrectly; Function Syn-
tax Error, involving incorrect function formats (Figure Eka) il-
lustrates this case, where the misuse of a non-existent function
resulted in a syntax error); Statement Structure Error, such as
improper clause ordering; Identifier Quoting Difference, where
mismatched quotation conventions lead to invalid identifiers;
and Data Type Error, where unsupported data types are used.
These errors indicate that LLMs may lack precise dialect-
specific syntax awareness, especially when dealing with re-
served keywords and varying quoting conventions.

E2. Semantic Errors (15%) occur when the generated
query is syntactically valid but produces incorrect semantics
in the context of the target DBMS. We observe two key
subtypes: Schema Error, which arises from incorrect assump-
tions about table or column names, and Type Incompatibility,
where incompatible data types are used in expressions or joins
(Figure Ekb) illustrates this case, where PostgreSQL does not
support comparisons between numeric values and non-numeric
strings, resulting in a runtime error). Such errors suggest that
LLMs struggle with aligning the input SQL’s schema context
to the target dialect’s data definitions, often due to hallucinated
or misinterpreted metadata.

E3. Logic Errors (28%) represent mistakes in query intent
or execution logic, where the structure is acceptable, but the
behavior diverges from the original query’s semantics. These

m Keyword Error
® Function Syntax Error
Statement Structure Error

Identifier Quoting Difference

others = Data Type Error

(11%)

m Schema Error

Syntax Errors
(46%)

u Type Incompatibility

51011321801

® Missing Dialect

® Function Misuse

® Missing Extension

® Data Type Mapping Error
® Format Error

® Not an Error

Other

Fig. 8: Taxonomy and statistics of errors.

include Missing Dialect, where dialect-specific features are
omitted (Figure [0[c) illustrates this case, in which the required
ClickHouse engine specification was dropped); Function Mis-
use, where an incorrect function is invoked; Missing Extension,
when required extensions are assumed available; and Data
Type Mapping Error, where incompatible or incorrect type
conversions lead to invalid behavior. These errors highlight
LLMs’ limitations in modeling nuanced dialect-specific behav-
iors and implicit assumptions, revealing a gap in understanding
execution-time dependencies across dialects.

EA4. Others (11%) include a variety of miscellaneous errors
that do not fit neatly into the previous categories. These errors
often involve malformed query fragments caused by incom-
plete generation, the use of unsupported or hallucinated SQL
constructs, and other unpredictable failures. Although less
frequent, such issues highlight robustness limitations in prompt
formulation, decoding stability, or model generalization.

Finding 4: Syntax Errors and Logic Errors are Top-
2 dominating error types, accounting for 74% of SQL
translation failures.

VII. DISCUSSION

LLM- VS. Non-LLM-Based SQL Translation. In this sec-
tion, we compare the effectiveness of LLM-based and non-
LLM-based SQL translation techniques to underscore the
potential of LLMs in this domain. Non-LLM-based techniques
follow a rule-based pipeline: a SQL parser first produces an
abstract syntax tree (AST), then handcrafted transformation
rules map dialect-specific constructs to their equivalents (e.g.,
replacing MySQL’s keyword “DATETIME” with PostgreSQL’s
“TIMESTAMP”). While offering high control and consis-
tency, it struggles with complex queries, database-specific
behaviors, and requires high maintenance costs. Specifically,
we compare two state-of-the-art traditional rule-based SQL
translation methods, namely JOOQ [3]] and SQLGLOT [6], to
highlight our contribution to SQL translation. We evaluate on



TABLE 1V: Evaluation results

of each model for SQL translation on BIRDTRANS dataset

SQLite — MySQL SQLite — PostgreSQL

SQLite — MariaDB

SQLite — MonetDB SQLite — DuckDB SQLite — ClickHouse

Models
DM EM EX DM EM EX DM EM EX DM EM EX DM EM EX DM EM EX
Code Large Language Models
SC 1471% 0.64% 19.96% 13.00% 0.12% 11.34% 13.71% 1.65% 18.70% 13.23% 0.20% 7.46% 16.28% 0.00% 20.64% 10.41% 0.43% 16.08%
CL 30.57% 15.78% 33.98% 26.39% 0.21% 18.90% 29.16% 12.19% 29.59% 14.01% 0.00% 14.26% 27.29% 1.53% 15.98% 19.09% 4.57% 34.56%
DSC 30.14% 15.78% 44.60% 27.13% 0.63% 41.17% 29.02% 11.06% 40.97% 20.68% 0.25% 20.56% 19.14% 0.69% 49.65% 20.25% 5.20% 41.95%
General Large Language Models
DSRI1 28.33% 4.64% 35.10% 28.24% 0.42% 6.30% 28.89% 2.43% 18.04% 17.09% 0.66% 4.14% 28.32% 0.00% 997% 1641% 1.09% 11.96%
GPT35T 48.63% 29.79% 62.71% 44.17% 1.20% 57.56% 43.25% 18.37% 67.80% 41.49% 0.66% 27.12% 43.81% 8.76% '60.53% 39.24% 17.83% 52.61%
GPT-40  26.18% 24.15% 81.32% 45.69% 4.83% |84.03% 22.59% 9.92% 85.20% 38.80% 1.99% 18.77% 43.74% 1.16% '81.94% 34.56% 16.30% | 85.22%
Gemini  36.56% 18.18% |81.82% 37.89% 3.03% 60.61% 56.25% 27.27% 72.73% 37.21% 3.03% 54.55% 35.42% 0.00%  76.47% 37.25% 8.82% [85.29%

Abbreviations: SC = SQLCoder;

CL = CodeLlama; DSC = Deepseek-Coder; DSR1 = Deepseek-R1; GPT35T = GPT-3.5-turbo; Gemini = Gemini-2.5-flash.

TABLE V: Evaluation results of each model for SQL translation on BUTTERTRANS dataset

Many — MySQL Many — PostgreSQL

Many — MariaDB

Many — MonetDB Many — DuckDB Many — ClickHouse

Models
DM EM EX DM EM EX DM EM EX DM EM EX DM EM EX DM EM EX
Code Large Language Models
SC 11.17% 0.12% 18.40% 15.70% 2.70% 13.94% 14.12% 5.12% 21.57% 11.20% 1.21% 10.46% 15.80% 2.80% 24.09% 11.20% 2.20% 18.46%
CL 15.58% 3529% 47.05% 22.59% 5.05% 15.39% 25.81% 7.49% 22.76% 22.40% 0.57% 0.95% 22.49% 2.57% 8.95% 18.80% 3.57% 16.61%
DSC 29.63% 23.52% 35.29% 34.56% 6.719% 33.49% 35.26% 21.90% 46.10% 28.02% 4.58% 8.78% 30.01% 8.19% 23.21% 19.12% 6.21% 20.34%
General Large Language Models
DSRI1 14.92% 11.76% 3529% 24.82% 6.16% 16.58% 59.01% 32.42% 48.84% 50.17% 15.83% 20.99% 44.21% 15.93% 2291% 19.83% 5.12% 13.35%
GPT35T 3243% 17.64% 7647% 60.42% 13.39% 59.71% 65.99% 15.57% 74.38% 70.95% 26.71% 48.28% 68.30% 14.52% 60.54% 44.58% 6.52% 46.46%
GPT-40  26.67% 46.06% 47.05% 66.37% 34.80% 53.45% 82.71% 62.52% 86.41% 68.52% 49.91% 48.58% 75.86% 55.27% 50.15% 56.87% 22.80% 42.84%
Gemini  27.27% 57.80% 55.82% 61.39% 35.14% 64.86%-88,89%-72.00% 51.35% 48.65% 65.08% 58.33% 47.22% 53.33% 35.14% 48.65%

Abbreviations: SC = SQLCoder;

Target DBMS:ClickHouse

(a) E1.Function Syntax Error

SELECT COUNT(DISTINCT T1.patient) FROM patients AS T1
INNER JOIN immunizations AS T2 ON T1.patient =
T2.PATIENT WHERE T1.race = 'black' AND T2.DESCRIPTION
'DTaP' AND strftime('%Y', T2.DATE) = 2013;
DB::Exception: Function with name “strftime” does not exist.

(b) E2.Type Incompatibility Target DBMS:PostgreSQL

SELECT 1 FROM t1 WHERE ROW/(a, b) >= ROW('1},
(SELECT 1 FROM t1 WHERE a > '1234abc'));

ERROR: invalid input syntax for type integer: "1234abc"
(c) E3. Missing Dialect Target DBMS:ClickHouse

CREATE TABLE t1 (a DECIMAL(1, 0), b DECIMAL(1, 0))

’

Missing Dialect “ENGINE=MergeTree”!

Fig. 9: Representative examples of LLM translation failures.

DLBENCH using the above two non-LLM baselines and GPT-
3.5-turbo. DBMSs unsupported by the rule-based methods are
excluded, and EX is used as the evaluation metric.

TABLE VI: Execution Accuracy of LLM- vs. Non-LLM-
Based Techniques on DLBENCH

Technique BIRDTRANS BUTTERTRANS
JOOQ 15.4% 18.2%
SQLGlot 8.2% 5.2%
GPT-3.5-turbo 54.9% 62.6%
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CL = CodeLlama; DSC = Deepseek-Coder; DSR1 = Deepseek-R1; GPT35T = GPT-3.5-turbo; Gemini = Gemini-2.5-flash.

As shown in Table [VI, non-LLM-based approaches per-
form poorly on both datasets. JOOQ achieves only 15.4%
EX on BIRDTRANS and 18.2% on BUTTERTRANS, while
SQLGLOT fails to generalize effectively, scoring as low as
8.2% and 5.2%, respectively. These results indicate that hand-
crafted rule-based systems struggle to handle the diverse and
complex SQL dialects featured in DLBENCH, especially when
encountering dialect-specific syntax and semantic nuances
not covered by predefined rules. In contrast, GPT-3.5-turbo
demonstrates significantly higher performance, highlighting
the advantage of LLMs in SQL translation tasks.
Implications. Although LLM-based SQL translation meth-
ods surpass traditional approaches, there remains room for
improvement. We recommend that researchers leverage DL-
BENCH for targeted evaluation and fine-tuning, and construct
richer dialect-specific datasets to improve robustness. For
practitioners, our findings reveal that larger models and the
integration of external knowledge (e.g., dialect documenta-
tion) consistently enhance translation quality, and retrieval-
augmented generation (RAG) is a practical strategy for de-
ployment. Finally, our error analysis highlights diverse risks
even in state-of-the-art LLMs, providing clear guidance for
advancing both research and practice in SQL translation.
Long-term Significance of DLBENCH. A natural concern
is whether the benchmark will remain challenging as LLMs
continue to advance. Although our latest results show no-
table progress—for example, GPT-40 achieves 70% EX—SQL
translation remains far from solved. The initial 35% success
rate of GPT-40-mini in automatic translations and the con-
tinued reliance on human annotation underscore the inher-



ent difficulty of the task. To ensure long-term applicability,
DLBENCH is designed with extensibility in mind: it can
readily incorporate new dialect phenomena, more complex
queries, and additional DBMSs as they emerge. Moreover, we
constructed a dialect feature knowledge base by crawling fea-
tures from seven major DBMSs, enabling experts to focus on
validating dialect-specific conversions rather than performing
full manual annotation, thereby reducing effort and supporting
future expansion.

Threats to Validity. Threats to external validity concern
whether our results can be generalized to other experimental
settings. Key factors include the multi-dialect DBMSs, LLMs,
and benchmark sources. In terms of database selection, we
evaluate three source DBMSs and six popular target DBMSs,
and results may differ for other DBMSs. However, since
the selected DBMSs are among the most widely used, our
benchmark and findings remain crucial for evaluating LLM
performance in SQL translation tasks. Furthermore, we plan to
apply the method proposed in this paper to additional DBMSs
in the future to extend both our benchmark and findings.
Due to resource constraints, we limit our evaluation to four
open-source LLMs (6.7-8 B parameters) and three close-
source LLMs, thereby covering a broad spectrum of model
complexity and capability. In terms of datasets, we gather our
datasets from various sources, including Text-to-SQL datasets
and DBMS test suites, which exhibit different characteristics
and reflect real-world project scenarios.

Threats to internal validity primarily include issues with
benchmark construction and the insufficient coverage of evalu-
ation metrics. In terms of benchmark construction, the quality
and level of detail in the natural language descriptions of
the automatic translation process may affect the translation
results generated by the LLM. Human translations may also
be influenced by subjective factors. To mitigate this threat,
we conducted a final review to ensure that the constructed
benchmark adheres to predefined quality standards. The lim-
itations of the evaluation metrics are especially evident for
certain query types, where the metrics might not fully capture
the functional correctness or performance of translations. In
the future, we plan to incorporate additional metrics such as
execution time comparisons, logical consistency checks, and
performance benchmarking to provide a more comprehensive
assessment.

VIII. RELATED WORK AND EXISTING DATASET

Text-to-SQL Systems and Benchmarks. Large language
models have recently achieved strong results on Text-to-SQL
tasks, using in-context learning techniques—such as chain-
of-thought [35]], [36]], question decomposition [35]—[37], and
self-reflection [35]-[38]—and supervised fine-tuning methods
exemplified by CodeS [39] and SQL-PaLLM [40]. Evaluation
typically relies on manually crafted benchmarks like SpPI-
DER [13]] and metrics such as Exact Matching Accuracy and
Execution Accuracy. However, these benchmarks mostly focus
on a single dialect (e.g., SQLite), leaving cross-dialect trans-
lation unexamined. To fill this gap, we propose a benchmark
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for automatic evaluation of SQL translation across multiple
dialects, reflecting real-world usage and exposing dialect-
specific failure modes [1].

Code Translation and Benchmarks. Code transla-
tion is essential for cross-language migration, and recent
LLMs—such as Deepseek [20], StarCoder [24], and GPT-
4 [9]—have achieved strong results through prompt engi-
neering and fine-tuning. Benchmarks like CoST [41f], XL-
Cost [42]], CodeXGLUE [43]], TransCoder-test [44]], and G-
TransEval [45] assess translation quality using metrics such
as Success@k and Build@k. In contrast, SQL translation
across dialects is more challenging due to diverse syntax
and semantics. Existing benchmarks focus on programming
languages, limiting comprehensive evaluation of LLMs on
SQL tasks. Moreover, pretraining corpora often lack dialectal
variety, underscoring the need for dedicated SQL translation
benchmarks and datasets.

Code-related Benchmarks Construction. Recent LLMs ex-
hibit remarkable capabilities in software development [29] and
are evaluated using diverse code-related benchmarks spanning
code generation [46]—-[52]], defect detection [53]-[57]], program
repair [58]]-[62], and code summarization [63[]-[|67]]. Our work
differs from these benchmarks by targeting the SQL translation
task with a purpose-built benchmark. We adopt the same five-
phase construction process—Design, Construction, Evaluation,
Analysis, and Release—and follow the HOW2BENCH prin-
ciples of reliability, validity, open access, and reproducibility
[68] to ensure high standards and foster a reliable, transpar-
ent benchmarking environment. Consequently, we introduce
a SQL translation benchmark, DLBENCH, that adheres to
this methodology while addressing the unique syntactic and
semantic challenges of cross-dialect translation.

IX. CONCLUSION

In this paper, we presented DLBENCH, the first comprehen-
sive benchmark for evaluating the SQL translation capabilities
of LLMs. DLBENCH comprises 6,402 translation tasks across
seven popular DBMSs and 9,320 SQL dialects, and includes
both content-matching and execution-based evaluation metrics
to measure structural, syntactic, and semantic fidelity. We
conducted experiments on seven advanced LLMs of diverse
architectures and sizes and the results show that DLBENCH
effectively distinguishes their performance profiles, highlight-
ing strengths on common constructs and exposing limitations
when handling complex, dialect-specific features.

ACKNOWLEDGEMENT

We sincerely thank the anonymous reviewers for their
valuable and insightful feedback. This research was supported
by the Natural Science Foundation of China (Grant No.
62272400) and Fujian Provincial Natural Science Foundation
of China (Grant No. 2025J010002). Rongxin Wu is the cor-
responding author and works as a member of Xiamen Key
Laboratory of Intelligent Storage and Computing in Xiamen
University.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

REFERENCES

T. Kraska, T. Li, S. Madden, M. Markakis, A. Ngom, Z. Wu, and
G. X. Yu, “Check out the big brain on brad: simplifying cloud data
processing with learned automated data meshes,” Proceedings of the
VLDB Endowment, no. 11, pp. 3293-3301, 2023.

A. L. Ngom and T. Kraska, “Mallet: Sql dialect translation with 1lm
rule generation,” in Proceedings of the Seventh International Workshop
on Exploiting Artificial Intelligence Techniques for Data Management,
2024, pp. 1-5.

L. Eder, “Jooq: Fluent api for typesafe sql query construction and
translation,” https://www.jooq.org/, 2024, accessed: 2024-12-29.

A. Igbal and R. Colomo-Palacios, “Key opportunities and challenges
of data migration in cloud: results from a multivocal literature review,”
Procedia computer science, vol. 164, pp. 48-55, 2019.

Amazon Web Services, “Amazon web services schema conversion tool,”
https://aws.amazon.com/dms/schema-conversion-tool/, accessed: 2025-
05-23.

T. Mao, “Sqlglot: Python sql parser and translator,” https://github.com/
tobymao/sqlglot, 2024, accessed: 2024-12-29.

J. Li, B. Hui, G. Qu, J. Yang, B. Li, B. Li, B. Wang, B. Qin, R. Geng,
N. Huo et al., “Can 1lm already serve as a database interface? a big bench
for large-scale database grounded text-to-sqls,” Advances in Neural
Information Processing Systems, vol. 36, pp. 42330-42357, 2023.

J. Fu, J. Liang, Z. Wu, and Y. Jiang, “Sedar: Obtaining high-quality
seeds for dbms fuzzing via cross-dbms sql transfer,” in Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering,
2024, pp. 1-12.

OpenAl, “Gpt-4 technical report,” CoRR, vol. abs/2303.08774, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2303.08774

J. Manyika, “An overview of bard: an early experiment with generative
ai,” Google, 2023, https://ai.google/static/documents/google-about-bard.
pdf.

Transaction Processing Performance Council, “TPC-DS: Decision Sup-
port Benchmark,” https://www.tpc.org/tpcds/, 2011, accessed: 2025-05-
15.

W. Zhou, Y. Gao, X. Zhou, and G. Li, “Cracksql: A hybrid sql dialect
translation system powered by large language models,” arXiv preprint
arXiv:2504.00882, 2025.

T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li,
Q. Yao, S. Roman et al., “Spider: A large-scale human-labeled dataset
for complex and cross-domain semantic parsing and text-to-sql task,”
arXiv preprint arXiv:1809.08887, 2018.

MySQL, “Mysql server,” https://github.com/mysql/mysql-server/tree/
trunk, accessed: 2025-03-22.
PostgreSQL, “Postgresql,”
cessed: 2025-03-22.
International Organization for Standardization, “ISO/IEC 9075-1:2023
— Information technology — Database languages — SQL — Part 1:
Framework,” https://www.iso.org/standard/76583.html, 2023, accessed:
2025-05-19.

D. Al “Sqlcoder-7b,” 2023, accessed: 2023-03-23. [Online]. Available:
https://huggingface.co/defog/sqlcoder-7b-2

B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, R. Sauvestre, T. Remez et al., “Code 1lama: Open foundation
models for code,” arXiv preprint arXiv:2308.12950, 2023.

D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen,
X. Bi, Y. Wu, Y. Li et al., “Deepseek-coder: When the large language
model meets programming—the rise of code intelligence,” arXiv preprint
arXiv:2401.14196, 2024.

DeepSeek, “Deepseek-rl-distill-llama-8b,” 2025. [Online]. Available:
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” Advances in neural
information processing systems, vol. 35, pp. 27 730-27 744, 2022.
OpenAl, “Hello gpt-40,” https://openai.com/index/hello- gpt-40/, May 13
2024, accessed: YYYY-MM-DD.

“Google gemini,” https://gemini.google.com/, accessed: 2025-09-15.

R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim et al., “Starcoder: may the source

be with you!” arXiv preprint arXiv:2305.06161, 2023.
R. Pan, A. R. Ibrahimzada, R. Krishna, D. Sankar, L. P. Wassi,

M. Merler, B. Sobolev, R. Pavuluri, S. Sinha, and R. Jabbarvand, “Lost in
translation: A study of bugs introduced by large language models while

https://github.com/postgres/postgres, ac-

12

[26]

[27]

(28]

[29]

[30]

[31]

[35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

translating code,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, 2024, pp. 1-13.

L. Nan, Y. Zhao, W. Zou, N. Ri, J. Tae, E. Zhang, A. Cohan, and
D. Radev, “Enhancing text-to-sql capabilities of large language models:
A study on prompt design strategies,” in Findings of the Association for
Computational Linguistics: EMNLP 2023, 2023, pp. 14935-14956.

G. Ou, M. Liu, Y. Chen, X. Du, S. Wang, Z. Zhang, X. Peng, and
Z. Zheng, “Enhancing llm-based code translation in repository context
via triple knowledge-augmented,” arXiv preprint arXiv:2503.18305,
2025.

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large
language model serving with pagedattention,” in Proceedings of the 29th
Symposium on Operating Systems Principles, 2023, pp. 611-626.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman ef al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

A. Gu, B. Roziere, H. Leather, A. Solar-Lezama, G. Synnaeve, and S. 1.
Wang, “Cruxeval: A benchmark for code reasoning, understanding and
execution,” arXiv preprint arXiv:2401.03065, 2024.

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang,
A. Chowdhery, and D. Zhou, “Self-consistency improves chain of
thought reasoning in language models,” 2023. [Online]. Available:
https://arxiv.org/abs/2203.11171

S. H. Khandkar, “Open coding,” University of Calgary, vol. 23, no.
2009, 2009.

F. Lei, J. Chen, Y. Ye, R. Cao, D. Shin, H. Su, Z. Suo, H. Gao, W. Hu,
P. Yin et al., “Spider 2.0: Evaluating language models on real-world en-
terprise text-to-sql workflows,” arXiv preprint arXiv:2411.07763, 2024.
Z. Yang, F. Liu, Z. Yu, J. W. Keung, J. Li, S. Liu, Y. Hong, X. Ma,
Z. Jin, and G. Li, “Exploring and unleashing the power of large language
models in automated code translation,” Proceedings of the ACM on
Software Engineering, vol. 1, no. FSE, pp. 1585-1608, 2024.

M. Pourreza and D. Rafiei, “Din-sql: Decomposed in-context learning
of text-to-sql with self-correction,” Advances in Neural Information
Processing Systems, vol. 36, pp. 36 339-36 348, 2023.

Y. Xie, X. Jin, T. Xie, M. Lin, L. Chen, C. Yu, L. Cheng, C. Zhuo,
B. Hu, and Z. Li, “Decomposition for enhancing attention: Improv-
ing llm-based text-to-sql through workflow paradigm,” arXiv preprint
arXiv:2402.10671, 2024.

B. Wang, C. Ren, J. Yang, X. Liang, J. Bai, L. Chai, Z. Yan, Q.-W.
Zhang, D. Yin, X. Sun et al., “Mac-sql: A multi-agent collaborative
framework for text-to-sql,” arXiv preprint arXiv:2312.11242, 2023.

S. Talaei, M. Pourreza, Y.-C. Chang, A. Mirhoseini, and A. Saberi,
“Chess: Contextual harnessing for efficient sql synthesis,” arXiv preprint
arXiv:2405.16755, 2024.

H. Li, J. Zhang, H. Liu, J. Fan, X. Zhang, J. Zhu, R. Wei, H. Pan, C. Li,
and H. Chen, “Codes: Towards building open-source language models
for text-to-sql,” Proceedings of the ACM on Management of Data, vol. 2,
no. 3, pp. 1-28, 2024.

R. Sun, S. O. Arik, A. Muzio, L. Miculicich, S. Gundabathula, P. Yin,
H. Dai, H. Nakhost, R. Sinha, Z. Wang et al., “Sql-palm: Improved large
language model adaptation for text-to-sql (extended),” arXiv preprint
arXiv:2306.00739, 2023.

M. Zhu, K. Suresh, and C. K. Reddy, ‘“Multilingual code snippets
training for program translation,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 36, no. 10, 2022, pp. 11783-11790.

M. Zhu, A. Jain, K. Suresh, R. Ravindran, S. Tipirneni, and C. K. Reddy,
“Xlcost: A benchmark dataset for cross-lingual code intelligence,” arXiv
preprint arXiv:2206.08474, 2022.

S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine
learning benchmark dataset for code understanding and generation,”
arXiv preprint arXiv:2102.04664, 2021.

M.-A. Lachaux, B. Roziere, L. Chanussot, and G. Lample, “Un-
supervised translation of programming languages,” arXiv preprint
arXiv:2006.03511, 2020.

M. Jiao, T. Yu, X. Li, G. Qiu, X. Gu, and B. Shen, “On the evaluation
of neural code translation: Taxonomy and benchmark,” in 2023 38th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). 1EEE, 2023, pp. 1529-1541.


https://www.jooq.org/
https://aws.amazon.com/dms/schema-conversion-tool/
https://github.com/tobymao/sqlglot
https://github.com/tobymao/sqlglot
https://doi.org/10.48550/arXiv.2303.08774
https://ai.google/static/documents/google-about-bard.pdf
https://ai.google/static/documents/google-about-bard.pdf
https://www.tpc.org/tpcds/
https://github.com/mysql/mysql-server/tree/trunk
https://github.com/mysql/mysql-server/tree/trunk
https://github.com/postgres/postgres
https://www.iso.org/standard/76583.html
https://huggingface.co/defog/sqlcoder-7b-2
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://openai.com/index/hello-gpt-4o/
https://gemini.google.com/
https://arxiv.org/abs/2203.11171

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, 1. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating
large language models trained on code,” 2021.

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le et al., “Program synthesis with large
language models,” arXiv preprint arXiv:2108.07732, 2021.

Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. D. Lago, T. Hubert, P. Choy,
C. de Masson d’Autume, I. Babuschkin, X. Chen, P-S. Huang,
J. Welbl, S. Gowal, A. Cherepanov, J. Molloy, D. J. Mankowitz,
E. S. Robson, P. Kohli, N. de Freitas, K. Kavukcuoglu, and
O. Vinyals, “Competition-level code generation with alphacode,”
Science, vol. 378, no. 6624, pp. 1092-1097, 2022. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.abq1158

N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao,
“Reflexion: language agents with verbal reinforcement learning,” in
Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023, A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds.,
2023. [Online]. Available: http://papers.nips.cc/paper_files/paper/2023/
hash/1b44b878bb782e6954cd888628510e90- Abstract-Conference.html
D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo,
C. Burns, S. Puranik, H. He, D. Song, and J. Steinhardt, “Measuring
coding challenge competence with apps,” NeurIPS, 2021.

C. S. Xia, Y. Deng, and L. Zhang, “Top leaderboard ranking= top coding
proficiency, always? evoeval: Evolving coding benchmarks via 1lm,”
arXiv preprint arXiv:2403.19114, 2024.

J. Chen, Q. Zhong, Y. Wang, K. Ning, Y. Liu, Z. Xu, Z. Zhao, T. Chen,
and Z. Zheng, “Rmcbench: Benchmarking large language models’
resistance to malicious code,” in Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, 2024, pp.
995-1006.

Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng,
and Y. Zhong, “Vuldeepecker: A deep learning-based system for
vulnerability detection,” in 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018. The Internet Society, 2018. [Online].

Available: https://www.ndss-symposium.org/wp-content/uploads/2018/
02/ndss2018_03A-2_Li_paper.pdf
Y. Zhou, S. Liu, J. K. Siow, X. Du, and Y. Liu, “Devign:

Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks,” in Advances in Neural
Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019,
pp. 10197-10207. [Online]. Available: https://proceedings.neurips.cc/
paper/2019/hash/49265d2447bc3bbfe9e76306ce40a3 1{- Abstract.html

S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet?” IEEE Trans. Software
Eng., vol. 48, no. 9, pp. 3280-3296, 2022. [Online]. Available:
https://doi.org/10.1109/TSE.2021.3087402

D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “pvuldeepecker: A deep
learning-based system for multiclass vulnerability detection,” CoRR,
vol. abs/2001.02334, 2020. [Online]. Available: http://arxiv.org/abs/
2001.02334

V. J. Hellendoorn, C. Sutton, R. Singh, P. Maniatis, and D. Bieber,

13

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

“Global relational models of source code,” in 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. [Online].
Available: https://openreview.net/forum?id=B 1InbRNtwr

R. Just, D. Jalali, and M. D. Ernst, “Defects4j: a database of existing
faults to enable controlled testing studies for java programs,” in
International Symposium on Software Testing and Analysis, ISSTA

14, San Jose, CA, USA - July 21 - 26, 2014, C. S. Pasareanu and
D. Marinov, Eds. ACM, 2014, pp. 437-440. [Online]. Available:

https://doi.org/10.1145/2610384.2628055

M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing patches
in the wild via neural machine translation,” ACM Trans. Softw. Eng.
Methodol., vol. 28, no. 4, pp. 19:1-19:29, 2019. [Online]. Available:
https://doi.org/10.1145/3340544

C. Le Goues, N. J. Holtschulte, E. K. Smith, Y. Brun, P. T.
Devanbu, S. Forrest, and W. Weimer, “The manybugs and introclass
benchmarks for automated repair of C programs,” IEEE Trans. Software
Eng., vol. 41, no. 12, pp. 1236-1256, 2015. [Online]. Available:
https://doi.org/10.1109/TSE.2015.2454513

N. Jiang, K. Liu, T. Lutellier, and L. Tan, “Impact of code language
models on automated program repair,” in 45th IEEE/ACM International
Conference on Software Engineering, ICSE 2023, Melbourne, Australia,
May 14-20, 2023. 1EEE, 2023, pp. 1430-1442. [Online]. Available:
https://doi.org/10.1109/ICSE48619.2023.00125

J. A. Prenner, H. Babii, and R. Robbes, “Can openai’s codex fix bugs?:
An evaluation on quixbugs,” in 3rd IEEE/ACM International Workshop
on Automated Program Repai, APR@ICSE 2022, Pittsburgh, PA,
USA, May 19, 2022. 1EEE, 2022, pp. 69-75. [Online]. Available:
https://doi.org/10.1145/3524459.3527351

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
source code using a neural attention model,” in Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, ACL
2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers.
The Association for Computer Linguistics, 2016. [Online]. Available:
https://do1.org/10.18653/v1/p16-1195

U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” in 7th International
Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. [Online]. Available:
https://openreview.net/forum?1d=H1gKYo09tX

Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S.
Yu, “Improving automatic source code summarization via deep
reinforcement learning,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, Montpellier, France, September 3-7, 2018, M. Huchard,
C. Kistner, and G. Fraser, Eds. ACM, 2018, pp. 397-407. [Online].
Available: https://doi.org/10.1145/3238147.3238206

N. Muennighoff, Q. Liu, A. R. Zebaze, Q. Zheng, B. Hui, T. Y.
Zhuo, S. Singh, X. Tang, L. von Werra, and S. Longpre, “Octopack:
Instruction tuning code large language models,” in The Twelfth
International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. [Online].
Available: https://openreview.net/forum?id=mw I PWNSWZP

D. Shrivastava, H. Larochelle, and D. Tarlow, “Repository-level prompt
generation for large language models of code,” in International
Conference on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, ser. Proceedings of Machine Learning
Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and
J. Scarlett, Eds., vol. 202. PMLR, 2023, pp. 31693-31715. [Online].
Auvailable: https://proceedings.mlr.press/v202/shrivastava23a.html

J. Cao, Y.-K. Chan, Z. Ling, W. Wang, S. Li, M. Liu, R. Qiao,
Y. Han, C. Wang, B. Yu, P. He, S. Wang, Z. Zheng, M. R. Lyu,
and S.-C. Cheung, “How should we build a benchmark? revisiting
274 code-related benchmarks for Ilms,” 2025. [Online]. Available:
https://arxiv.org/abs/2501.10711


https://www.science.org/doi/abs/10.1126/science.abq1158
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-2_Li_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-2_Li_paper.pdf
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://doi.org/10.1109/TSE.2021.3087402
http://arxiv.org/abs/2001.02334
http://arxiv.org/abs/2001.02334
https://openreview.net/forum?id=B1lnbRNtwr
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/3340544
https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1145/3524459.3527351
https://doi.org/10.18653/v1/p16-1195
https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.1145/3238147.3238206
https://openreview.net/forum?id=mw1PWNSWZP
https://proceedings.mlr.press/v202/shrivastava23a.html
https://arxiv.org/abs/2501.10711

	Introduction
	Task Definition
	Input-Output Space
	Semantic Equivalence Constraints

	DLBench
	Benchmark Construction
	Dataset Statistics

	Evaluation Metrics
	Content Matching-based Metrics
	Execution-based Metrics

	Experimental Setup
	Models
	Prompting Strategies
	Experimental Environment

	Results and Analysis
	Effectiveness of LLMs in SQL Translation
	Effectiveness of Enhanced Prompt
	Error Analysis

	Discussion
	Related Work and Existing Dataset
	Conclusion
	References

