Validating LLM-Generated SQL Queries through
Metamorphic Prompting

LI LIN, Xiamen University, China

QINGLIN ZHU, Xiamen University, China

JINTAI HONG, Xiamen University, China

CHONG WANG, Nanyang Technological University, Singapore
YANG LIU, Nanyang Technological University, Singapore
RONGXIN WU, Xiamen University, China

Large Language Models (LLMs) can translate natural language (NL) into SQL, enabling non-experts to
query databases via conversational interfaces. However, the generated SQL often contains intent-violating
hallucinations—queries that are syntactically valid and executable, yet semantically misaligned with the user’s
question. These failures are especially risky in real-world settings where users cannot verify the correctness.

In this paper, we propose MRSQLGEN, a framework for detecting intent-violating hallucinations, built on the
metamorphic prompting paradigm. MRSQLGEN rewrites the input prompt using task-specific transformation
rules derived from a hallucination taxonomy, and validates the generated SQL by checking behavioral consis-
tency across multiple executions. Each transformation is associated with a metamorphic relationship (MR) that
defines the expected relation between results; discrepancies are aggregated through a majority-vote strategy
to robustly flag hallucinations without ground-truth SQL. We evaluate MRSQLGEN on two benchmarks
(SpIDER and BIRD) using five representative LLMs, including GPT-40. Experimental results demonstrate that
MRSQLGEN consistently outperforms state-of-the-art hallucination detection techniques, achieving higher
precision and recall in detecting hallucinated SQL queries.

CCS Concepts: » Software and its engineering — Software maintenance tools.
Additional Key Words and Phrases: Metamorphic Prompting; NL2SQL; Hallucinations

ACM Reference Format:

Li Lin, Qinglin Zhu, Jintai Hong, Chong Wang, Yang Liu, and Rongxin Wu. 2026. Validating LLM-Generated
SQL Queries through Metamorphic Prompting. Proc. ACM Softw. Eng. 3, FSE, Article FSE019 (July 2026),
23 pages. https://doi.org/10.1145/3797146

1 Introduction

Emerging trends and challenges. With the rise of large language models (LLMs), translating
natural language (NL) into SQL has become a practical solution for non-experts to query databases.
NL2SQL methods simplify access to structured data by lowering the barrier to understanding
SQL syntax and database concepts, enabling broader adoption in data analysis [1-4], business
intelligence [5-8], and other data-centric domains. However, one of the critical challenges they face
is the problem of hallucination, where the models generate plausible but factually incorrect answer.

Authors’ Contact Information: Li Lin, Xiamen University, , China, linli1210@stu.xmu.edu.cn; Qinglin Zhu, Xiamen Uni-
versity, , China, 23020241154481@stu.xmu.edu.cn; Jintai Hong, Xiamen University, , China, hongjintai@stu.xmu.edu.cn;
Chong Wang, Nanyang Technological University, , Singapore, chong.wang@ntu.edu.sg; Yang Liu, Nanyang Technological
University, , Singapore, Yangliu@ntu.edu.sg; Rongxin Wu, Xiamen University, , China, wurongxin@xmu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2026 Copyright held by the owner/author(s).

ACM 2994-970X/2026/7-ARTFSE019

https://doi.org/10.1145/3797146

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

HTTPS://ORCID.ORG/0009-0004-9895-8360
HTTPS://ORCID.ORG/0009-0005-7759-9431
HTTPS://ORCID.ORG/0009-0001-0110-3701
HTTPS://ORCID.ORG/0000-0003-1424-6290
HTTPS://ORCID.ORG/0000-0001-7300-9215
HTTPS://ORCID.ORG/0000-0002-4648-3795
https://doi.org/10.1145/3797146
https://orcid.org/0009-0004-9895-8360
https://orcid.org/0009-0005-7759-9431
https://orcid.org/0009-0001-0110-3701
https://orcid.org/0000-0003-1424-6290
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0002-4648-3795
https://doi.org/10.1145/3797146

FSE019:2 Li Lin, Qinglin Zhu, Jintai Hong, Chong Wang, Yang Liu, and Rongxin Wu

User Question

-
List all customer names who placed orders in 2024, ordered by name. User

Schema Instances N
Users may not | notice it!
TABLE Customers Customer_id Name
TABLE Orders 1 Alice rFrmTmmmmm——— ~ \
rders
order_id INTEGER, . ‘ W 1
customer_id INTEGER, 4 Diana - | Alice 1
order date TEXT, - - 1 Bob 1
Order_id Customer_id Order_date 1 Charlie 1
PRIMARY KEY (order id), 101 1 2024-01-15 LLM : r— 1
FOREIGN KEY (customer_id) 102 2 2024-05-03 « _ U
REFERENCES
Customers(customer_id) 103 3 '2'(;24 05.10 Execution Name
) -05-
106 4 2024-08-01 Results
LLM-generated Query I
cR—
SELECT C.name FROM Customers C JOIN Orders O ON C.customer i = O.customer _id e
WHERE: S < | — —
ORDER BY C.name ASC: O order date BETWEEN 2024-01-01'AND 2024-12-31] -
Database

Fig. 1. A Case of Intent-Violating Hallucination in NL2SQL

Some user studies [9, 10] show that programmers find it hard to trust and debug the LLM-generated
SQL query as the generation procedure is opaque and out of control. Intuitively, since LLMs are
trained on numerous code repositories, such as GitHub, they may inadvertently learn from code
that contains bugs and flaws. Therefore, without rigorous validation and testing, incorporating
these unverified queries into production systems could lead to system failures, data corruption, or
other critical malfunctions, ultimately undermining the reliability of the entire application.

Detecting hallucinations in NL2SQL systems faces a critical challenge. While syntax errors and
schema violations are relatively easy to detect and resolve, hallucinations that violate a user’s
query intent are significantly more difficult to identify. We refer to these errors as intent-violating
hallucinations ! —SQL queries that are syntactically valid and executable, yet semantically
misaligned with the user’s original question. As shown in Figure 1, an LLM may generate a
syntactically valid SQL query that subtly deviates from the user’s intent—for example, filtering
records using “order_date = ’2024’” instead of the correct range-based condition “BETWEEN
’2024-01-01" AND ’2024-12-31"". Although the query executes successfully, it silently returns
an empty result or a partial result set, misleading users into thinking that no matching records exist.
This is particularly dangerous in real-world data analysis and decision-making scenarios, where
users typically lack the technical expertise or schema awareness needed to verify the correctness
of the generated query. The deceptive validity of such hallucinations underscores the urgent need
for real-time hallucination detection mechanisms in NL2SQL systems. This motivates our work:
we aim to systematically identify and mitigate intent-violating hallucinations in real-time SQL
generation by ensuring consistency between query behavior and user intent.

Related work and their limitations. Existing techniques on model and code quality valida-

tion can hardly detect erroneous LLM-generated SQL queries. @D A common line of work adopts
external-resource-based validation methods to detect hallucinations in LLM-generated SQL. One

In this paper, we primarily focus on intent-violating hallucination detection, which we sometimes refer to simply as
hallucination detection for brevity.

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

Validating LLM-Generated SQL Queries through Metamorphic Prompting FSE019:3

representative category is benchmark-based evaluation. For instance, Spider [11] and similar bench-
marks are widely used to assess the SQL generation capabilities of LLMs by comparing model
outputs against gold-standard queries. However, such evaluations require access to predefined
ground-truth SQL, which are generally unavailable in real-world applications—otherwise, auto-
mated generation would not be needed. Another category involves static or dynamic analysis
tools [12, 13]. These tools detect surface-level issues such as syntax errors, type mismatches, or
invalid schema references using SQL parsers (e.g., ANTLR [12]) or runtime checks. While effective
for generic bugs, they fail to assess whether the generated SQL semantically aligns with the user’s in-

tent. @ Another line of research leverages confidence estimation to detect hallucinations, especially
in natural language generation (NLG) tasks such as question answering [14], summarization [15],
and dialogue systems [16]. These methods [17, 18] assume that low-confidence outputs—measured
via token probabilities or entropy—are more likely to be hallucinated. However, most LLMs are
black-box systems that do not expose confidence scores. To address this limitation, SELFCHECK-
GPT [19] proposes a model-agnostic strategy that queries the LLM multiple times to generate
alternative responses and compares them to the original output. While promising, SELFCHECKGPT
is less effective for NL2SQL tasks, as the model tends to generate nearly identical SQL queries
across samples [20], making it hard to spot hallucinated segments through output comparison.

(3 A third line of work uses LLM-as-a-judge methods to evaluate whether generated outputs are
consistent with the input prompt, a strategy primarily applied in NLG tasks. While effective for
assessing semantic consistency in natural language outputs, these methods struggle in NL2SQL
tasks, where correctness depends on precise schema usage and execution logic rather than shallow
semantic alignment, making intent-violating hallucinations difficult to detect [21].

Key insights. To address the limitations of prior work, we propose a novel hallucination detection
technique called metamorphic prompting (MP)—a resource-agnostic approach that requires
neither predefined ground-truth SQL nor access to external validators or model confidence scores.
Our method draws inspiration from metamorphic testing (MT), a software testing paradigm that
validates program behavior without test oracles by applying controlled input transformations
that preserve expected input-output relationships, known as metamorphic relationships (MRs);
violations of these MRs often signal latent faults. We extend this principle to the LLM-based
hallucination detection. Our key insight is that hallucinated SQL queries often reveal behavioral
inconsistencies when subjected to carefully crafted prompt transformations. These transformations
are not necessarily semantically equivalent but are designed to preserve or slightly alter the original
intent in a controlled manner. A correct SQL query should still produce consistent behavior under
such changes, whereas hallucinated queries—often based on brittle or shortcut reasoning—tend to
fail this consistency check.

Unlike sampling-based methods (e.g. SELFCHECKGPT) that passively generate multiple outputs
from the same prompt, MP actively rewrites the input question using intent-preserving or intent-
perturbing modifications. These rewrites guide the model along alternative reasoning paths, thereby
increasing the chances of revealing hidden inconsistencies in its SQL generation behavior. By
analyzing discrepancies across the outputs of these transformed prompts, we can detect intent-
violating hallucinations without relying on any reference answers.

MRSQLGEN. Leveraging these insights, we implement a novel framework, MRSQLGEN, which
applies MP to validate LLM-generated SQL queries. The workflow consists of two modules:

e Prompt Paraphrasing. Given an input natural language prompt, the Prompt Paraphrasing
module generates a set of metamorphic variants using a suite of transformation rules. To construct
these rules, we first conduct an empirical study to identify common hallucination patterns and
their root causes in LLM-generated SQL. Based on this analysis, we construct a hallucination

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

FSE019:4 Li Lin, Qinglin Zhu, Jintai Hong, Chong Wang, Yang Liu, and Rongxin Wu

knowledge base (HKB) and design a set of prompt-level metamorphic rules tailored to these
failure modes. To ensure each prompt is paired with the most relevant transformations, we
employ a similarity-based retrieval mechanism that identifies the most likely hallucination types
from HKB, based on the semantics of the input prompt and the structure of the generated SQL.
We then select and adapt appropriate transformation rules accordingly. These rules are used to
generate metamorphic prompts, which are fed back into the LLM to produce transformed SQL
queries, referred to as metamorphic queries.

e Cross Validation. The Cross Validation module executes both the original and metamorphic
queries against the same database and compares their outputs to detect behavioral inconsis-
tencies. Inspired by the prior work [22], we adopt a balanced comparison strategy that flags
a hallucination only when the majority of metamorphic queries break expected MR, thereby
enhancing robustness and reducing false positives.

Evaluation. We conduct a comprehensive evaluation of MRSQLGEN on two widely used NL2SQL
benchmarks: SpIDER [11] and BIrD [23], both of which provide ground truth SQL queries, allowing
us to use the execution accuracy (EX) metric to determine whether an LLM-generated SQL query
contains hallucinations. Our evaluation covers five representative LLMs, including GPT-40, spanning
a range of model families and capabilities. We compare MRSQLGEN against two strong baselines:
SELFCHECKGPT, a sampling-based hallucination detector, and an in-house implementation of LLM-
as-a-judge, which prompts the LLM itself to assess the correctness of its own output. Experimental
results show that MRSQLGEN consistently outperforms both baselines in terms of precision, recall,
and F1 score across all evaluated models. In particular, with CodeLlama, MRSQLGEN attains an F1
score of 0.805 on SPIDER and 0.944 on Birp, exceeding SELFCHECKGPT by 121%/181% and LLM-
as-a-judge by 225%/272%, respectively. Our ablation study further confirms that both the Prompt
Paraphrasing and Cross Validation modules are essential to reliable hallucination detection.

Contributions. Our major contributions include:

e We propose the first hallucination detection technique based on metamorphic prompting to
identify intent-violating hallucinations in LLM-generated SQL queries, without requiring ground
truth or external validation signals.

e We conduct a comprehensive empirical study of hallucinations in LLM-based NL2SQL generation,
leading to a structured taxonomy of hallucination types and an analysis of their root causes.

e We develop and open-source MRSQLGEN, a practical framework for hallucination detection in
NL2SQL. Extensive experiments on benchmark datasets show that it significantly outperforms
strong baselines across multiple LLMs.

2 Background and Motivation

Metamorphic Testing. Metamorphic Testing (MT) is a well-established software testing paradigm
designed to address the oracle problem—the challenge of verifying correctness when the expected
output is unknown or difficult to specify [24]. Rather than checking correctness against a fixed
oracle, MT relies on Metamorphic Relationships (MRs)—expected relationships between inputs and
outputs that should hold under specific transformations. Given a source test input and its output,
MT generates one or more follow-up test inputs through predefined rules named metamorphic
rules and verifies whether the outputs satisfy the corresponding MRs [25, 26].

Due to its ability to handle unknown outputs, MT has been effectively applied to testing LLMs,
which often produce non-deterministic results. Some studies [27-29] have explored automated
testing frameworks that integrate logic programming with MT to detect fact-conflicting hallu-
cinations in LLMs. Ma et al. [30] proposed a MT-based approach to evaluate NLP models and
identify potential biases. Additionally, other studies [31-34] have explored the robustness of LLMs

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

Validating LLM-Generated SQL Queries through Metamorphic Prompting FSE019:5

by testing them with adversarial input text or modified prompt descriptions. In contrast to these
works, we are the first to adopt the methodology of MT to validate LLM-generated SQL queries by
elevating the MT process to the prompt level.
Metamorphic Prompting Paradigm. Given a natural language prompt x and an LLM-generated
SQL query g = LLM(x), our goal is to determine whether g exhibits an intent-violating hallucination.
Since no ground truth SQL is assumed, we adopt a metamorphic prompting (MP) approach, which
defines a set of semantic-preserving transformations 7~ = {11, T, . . ., T,, } over the input prompt.

For each transformation T; € 77, a new prompt x; = T;(x) is generated, and the corresponding
SQL g; = LLM(x;) is obtained. Let r and r; denote the execution results of q and g; on the same
database D, i.e., r = Exec(q, D) and r; = Exec(q;, D). Each transformation T; is associated with a
predefined MR R; that specifies the expected relation between r and r;.

We define that g is hallucinated if the number of violated MRs exceeds a threshold pn, where
p € [0,1] is a configurable proportion parameter:

Hallucination(q) = ZI[—'Ri(r, r)]>p-nl,
i=1

where I[-] returns 1 if the condition is true, and 0 otherwise. In other words, a hallucination is
flagged when the proportion of violated MRs exceeds the threshold p.

Empirical Benefits of Metamorphic Prompting. We aim to empirically verify our key hypothesis
that MP can alter the reasoning trajectories of LLMs, thereby improving their ability to detect
hallucinations. Neuron activation coverage has been widely adopted as a proxy for how thoroughly
amodel explores its internal representation space [35]. Higher coverage indicates that more neurons
or activation regions are engaged during inference, leading to richer and more diverse reasoning
trajectories. Building on this, Dong et al. [36] argue that when a task admits multiple valid reasoning
paths, these paths are unlikely to produce the same erroneous output. In other words, greater
diversity in reasoning paths tends to yield more varied error patterns, making discrepancies between
outputs easier to detect—discrepancies that can be leveraged to identify hallucinations.

To empirically test this hypothesis, we design a preliminary experiment to examine whether
MP can indeed alter the reasoning trajectories of LLMs. We randomly select 200 prompts from
the SpipER [11] dataset and compare two prompting strategies: (i) Sampling-based prompting,
following the SELFCHECKGPT [19], where the model is asked with the same original prompt 10
times (using stochastic sampling) to produce 10 outputs; (ii) Metamorphic prompting, where we
construct 10 metamorphic variants of the original prompt and feed each variant to the model once,
yielding 10 outputs. Since neuron-level activations are generally inaccessible in closed-source LLMs,
we conduct the experiment on the open-source Mistral-7B-Instruct-v0.2 model [37]. Following
prior work [38], we measure Neuron Coverage (NC), Top-k Neuron Coverage (TKNC), and
Neuron Layer Coverage (NLC), which collectively quantify the diversity and breadth of neuron
activations as a proxy for exploring alternative reasoning paths. As shown in Table 1, MP achieves
improvements of 160.36%, 95.83%, and 3.19% in NC, TKNC, and NLC, respectively, compared to
sampling-based prompting, indicating substantially broader and more diverse neuron activation.
These findings provide empirical evidence that MP effectively diversifies the model’s reasoning
trajectories, thereby enhancing its ability to detect hallucinations.

Challenges in Metamorphic Prompting. Applying MP to hallucination detection in LLM-based
SQL generation introduces two fundamental challenges.

e Challenge 1: Constructing reliable metamorphic prompts. In traditional software, MRs are
often derived from formal specifications or predefined input-output patterns [39-43]. However,
for natural language prompts, there is no canonical form or deterministic specification to guide

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

FSE019:6 Li Lin, Qinglin Zhu, Jintai Hong, Chong Wang, Yang Liu, and Rongxin Wu

Table 1. Neuron Activation Coverage under Sampling-based vs. Metamorphic Prompting.

Prompting Method NC (%) TKNC (%) NLC (Neurons)

Sampling-based Prompting 2591 0.24 790,450
Metamorphic Prompting 67.46(+160.36%) 0.47(+95.83%) 815,636(+3.19%)

Note: NC (Neuron Coverage) measures whether each individual neuron is activated by the inputs; TKNC (Top-k Neuron
Coverage) measures whether the top-k most activated neurons are covered; NLC (Neuron Layer Coverage) analyzes the
distribution of neuron activations to assess whether new regions of the activation space are explored.

MR design. Since LLMs are sensitive to subtle linguistic variations, crafting prompt transfor-
mations that reliably preserve or perturb intent—without introducing ambiguity or drift—is
inherently difficult. Effective MP requires transformations that are semantically controlled yet
diverse enough to expose behavioral inconsistencies in the model.

e Challenge 2: Verifying hallucinations under uncertainty. The probabilistic nature of LLMs
introduces ambiguity in result interpretation. Specifically, randomness arises from two sources: (i)
the non-deterministic decoding process may yield different SQLs across identical prompts, and (ii)
behavioral inconsistency between the original and metamorphic prompts makes it unclear which
query is hallucinated. This dual uncertainty complicates hallucination diagnosis and requires a
robust verification mechanism that tolerates variation while ensuring semantic consistency.

Solutions. To tackle the first challenge, we observe that hallucinations in NL2SQL generation often
follow recurrent patterns rooted in specific reasoning failures (e.g., join logic errors). This motivates
a taxonomy-driven approach: we conduct an empirical study to identify common hallucination
types, store them in a structured Hallucination Knowledge Base (HKB), and then distill a set of MRs
tailored to each failure mode. Given a new prompt, we retrieve the most similar historical cases
from the HKB and apply targeted prompt transformation rules to generate semantically controlled
variants. These transformations are designed to preserve or minimally perturb the original query
intent while surfacing inconsistencies in the model’s reasoning. To address the second challenge,
we propose the metamorphic prompting paradigm to detect hallucinations through behavioral
consistency checks. Specifically, we compare the execution results of the original query and its
metamorphic variants to assess semantic stability. Instead of relying on any single discrepancy, we
introduce a cross-validation mechanism [22] that flags a hallucination only when a majority of the
metamorphic queries violate their expected relationships. This voting mechanism mitigates the
impact of LLM randomness and allows robust, reference-free hallucination detection.
Motivating Example. Figure 2 illustrates a motivating example of MRSQLGEN. In this case, the
LLM generates a SQL query that incorrectly filters by an exact year string "2024", resulting in
a violating value specification error that silently returns an empty result. To detect such subtle
hallucinations, MRSQLGEN applies the metamorphic prompting paradigm: it rewrites the original
prompt into several semantically controlled variants, each targeting different aspects of model
reasoning. Specifically, MP_1 introduces a temporal zoom-in (e.g., "May 2024") to test fine-grained
value understanding, MP_2 broadens the temporal scope (e.g., "2023 to 2024") to verify coverage
consistency, and MP_3 applies a chain-of-thought (CoT) style to encourage step-by-step reasoning.
By executing the resulting SQL queries and comparing their outputs against the original under
predefined MRs, MRSQLGEN identifies behavioral inconsistencies and flags the original query as
hallucinated when a majority of transformations violate expectations.

3 System Overview

The overview of our approach is illustrated in Figure 3. Our goal is to systematically detect and
mitigate hallucinations in real-time SQL generation by ensuring consistent alignment between
query behavior and user intent. To achieve this, we introduce a dedicated Validating Component,
which performs runtime validation of the generated SQL queries. In this component, the input

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

Validating LLM-Generated SQL Queries through Metamorphic Prompting

BE- ¢

1-'
g
2

—

IE I\

Be:

LLM
. Name
/ List customer names who placed orders from .- - a
2023 to 2024, ordered by name. --] ce l®)
MP_2 ® Bob >
SELECT C.name FROM Customers C JOIN Orders O R2 Charlie ORe)
@D ON C.customer id = O.customer id WHERE Diana g
O.order_date BETWEEN 2023-01-01' AND '2024-12-

=
=

List all customer names who placed
orders in 2024, ordered by name.

. Q —
SELECT C.name FROM Customers C JOIN Orders O 1 Name
ON C.customer_id O.customer_id WHERE -0
S , e —
O.order_date = 2024' ORDER BY C.name ASC R

List customer names who placed orders in May
2024, ordered by name.

SELECT C.name FROM Customers C JOIN Orders O
ON C.customer_id = O.customer_id WHERE
O.order_date BETWEEN '2024-05-01' AND '2024-05-

31' ORDER BY C.name ASC;

31' ORDER BY C.name ASC;

-n-] Name
-Q Bob LI
R1

Charlie

Expected Relation: R1 € R*

Expected Relation: R2 2 R*

FSE019:7

List all customer names who placed orders in Name
/ 2024, ordered by name. Please think step by Lﬂﬂ Alice
= step before writing SQL: (a) Locate orders in '0 Bob
MP_3 2024, (b) JOIN Orders with Customers (c) R3 Charlie
return names alphabetically... 2
Diana ~

SELECT C.name FROM Customers C JOIN Orders O
@ ON C.customer_id O .customer_id WHERE Expected Relation: R3 =R*
O.order_date BETWEEN ‘2024-01-01' AND '2024-12-
LLM (31" ORDER BY C.name ASC

* MP denotes Metamorphic Prompt
* R denotes Execution Results

Fig. 2. A Motivating Example

prompt is first passed through a Prompt Paraphrasing module that generates a set of metamor-
phic prompts—reformulations that maintain a well-defined MR with the original prompt. These
metamorphic prompts are then issued to the same LLM, generating multiple metamorphic queries.
Each of these queries is executed against the same database to produce a set of corresponding
results. Finally, all the results—including the original target result—are compared using a Cross
Validation module to determine whether the outputs violate the behavioral expectations defined
by the MRs. Our proposed framework, MRSQLGEN, consists of two key modules.

Prompt Paraphrasing. This module addresses a key challenge in MP: how to effectively generate
metamorphic prompts for a given NL2SQL task. To tackle this, we begin by conducting an empirical
study to identify common hallucination patterns and their root causes, and organize them into a
hallucination knowledge base (HKB). Given a new task, we retrieve the most likely hallucination
types by considering both the prompt’s semantics and the structure of the LLM-generated SQL. We
then select and adapt metamorphic rules targeting these hallucination types to produce prompts
that maintain a well-defined relationship with the original, enabling downstream validation.

Cross Validation. This module compares the outputs of the original and metamorphic queries to
identify behavioral inconsistencies that indicate hallucinations. We adopt a balanced comparison
strategy inspired by prior work [22], where a hallucination is flagged only if the majority of
metamorphic queries violate their expected MRs with the original.

We describe each module in the following sections. Section 4 presents our empirical study
motivating the HKB construction. Section 5 details the Prompt Paraphrasing module for generating
task-specific metamorphic prompts. Section 6 introduces the Cross Validation module for detecting
hallucinations via behavioral consistency checks.

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

FSE019:8 Li Lin, Qinglin Zhu, Jintai Hong, Chong Wang, Yang Liu, and Rongxin Wu

Generating Component
==
:@ A TargetQuery Il = —
S|
LLM

Database I

MRSQLGen: Validating Component

Prompt How can we effectively generate How can we determine whether the Cross - Error
Report
~

Paraphasing metamorphic prompts? target SOL contains hallucinations? Validation

| |
& —_—
_ LLM _ Database —

(l

Fig. 3. System Overview of MRSQLGen

4 Hallucination Analysis in NL2SQL System

In this section, we empirically analyze the manifestations and root causes of LLM hallucinations
in NL2SQL tasks. Our study aims to characterize the subtle manifestations and root causes of
hallucinations in SQL generation, particularly intent-violating hallucinations, which often evade
conventional detection. This analysis contributes to a deeper and more systematic understanding
of the generative behaviors and failure modes of LLMs in NL2SQL applications.

4.1 Empirical Setup

4.1.1 Dataset. To better reflect real-world query demands and practical development settings, we
adopt the widely used NL2SQL benchmark Spiper [11] as the foundation for our hallucination
analysis. SPIDER is a cross-domain semantic parsing dataset that contains 10,181 natural language
questions and 5,693 unique complex SQL queries spanning 200 relational databases across 138
domains. The databases are sourced from real-world applications, ensuring that the query tasks
exhibit realistic complexity and diversity. We sample 50% of the tasks from Spider. The sampling
uses a stratified strategy, where we randomly select 50% of the tasks within each difficulty level to
ensure balanced coverage.

4.1.2 Model and Prompt Selection. We evaluate two models: the closed-source GPT-40-mini [44]
and the open-source Deepseek-Coder-6.7B-Instruct [45]. We employ the in-context learning prompt
strategy DAIL-SQL [46], which, as of January 2025, has achieved the best performance on the
SpIDER benchmarks. All configurations follow the DAIL-SQL setup, including the nuclear sampling
strategy and a temperature setting of 0.0. As a single NL question may correspond to multiple
equivalent SQL queries, we adopt execution match (EM) as the correctness metric throughout all
experiments. To quantify the risk of coincidental execution matches, we manually inspected 100
randomly sampled EX-matched cases whose generated SQL differs from the ground truth; 98% of
them were found to be semantically correct, indicating that such cases are rare in practice.

4.1.3 Taxonomy Annotation. In order to analyze the hallucination types in the LLM-generated
SQL queries, we manually perform open coding [47] on the generated SQL queries to obtain the
hallucination taxonomy. Our annotation process comprises three main stages:

(1) Initial Open Coding. In the first stage, we randomly select 10% of the NL2SQL tasks for a
preliminary analysis. For each selected task, multiple SQL snippets are generated by the evaluated

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

Validating LLM-Generated SQL Queries through Metamorphic Prompting FSE019:9

models and executed in the corresponding SQLite environment to verify their correctness. On this
basis, the three authors compare the LLM-generated SQL queries against the ground-truth and
discuss and record possible hallucination phenomena.

(2) Preliminary Taxonomy Construction. Based on the initial analysis, we document the
different types of SQL hallucinations and the locations where hallucinated content occurs within
queries. Since multiple types of hallucinations may appear within a single SQL snippet, three au-
thors independently label the errors in the snippets and engage in discussions to reach a consensus.
The annotation consistency is measured using Cohen’s Kappa score, with a value of 0.95 indicating
substantial agreement. Through this process, we group similar hallucinations to construct a pre-
liminary taxonomy that categorizes various hallucination types and defines their implications in
LLM-generated SQL queries.

(3) Full Taxonomy Construction. Building upon the preliminary taxonomy, the remaining SQL
snippets are independently annotated by three experts with extensive experience in the database
field (two with 6 years of experience and one with 4 years of experience). Any discrepancies in the
annotations are resolved through discussion, and new error types are incorporated as necessary,
with further expansion and refinement of the taxonomy through collaboration among the three
authors. This manual analysis process, carried out by six domain experts, required considerable
domain-specific knowledge of databases and SQL, and consumed approximately 600 hours in total.

4.2 Hallucination Taxonomy

After manually studying 3,968 incorrect SQL queries generated by studied models, we build a two-
level error taxonomy with 25 types, as illustrated in Figure 4. This taxonomy classifies hallucinations
into four major categories: (1) Syntax Errors (3.08%) refer to violations of the SQL grammar, such
as misuse of keywords, missing quotes or parentheses, and other parser-level violations. These
errors are relatively easy to identify since they are directly caught by SQL parsers and raise explicit
exceptions during execution. (2) Semantic Errors (15.73%) are grammatically valid but fail during
execution due to issues such as table-column mismatches, use of non-existent tables, or data type
conflicts. These are also typically easy to detect in production settings, as database engines will
return runtime exceptions when such issues occur. (3) Intent-violating Hallucinations (77.62%)
are logically subtle: the generated queries may execute without errors, but they fail to match the
user’s original intent. These hallucinations are particularly insidious because they are syntactically
and semantically valid but logically incorrect—thus much harder to detect automatically in practice.
Importantly, this category accounts for a substantial proportion of all observed hallucinations,
underscoring its critical impact on NL2SQL reliability. (4) Finally, the Others (3.58%) category
covers output formatting issues, gold label hallucinations, and miscellaneous low-frequency errors.
Due to space limitations, we primarily focus on the Intent-violating Hallucination category in
our detailed analysis, as it presents the greatest challenge for reliable detection in real-world
deployment scenarios. The complete taxonomy and annotation guidelines are available in our
public repository [48].

Following, we break down the Intent-violating Hallucinations into ten subtypes, with percentages
indicating their relative distribution, noting that each instance may belong to multiple subtypes.

C1: Operator Misuse (4.9%). This type of hallucination refers to the incorrect use of arithmetic,
comparison, or logical operators in the generated SQL query, leading to query logic that deviates
from the user’s original intent. The hallucination typically stems from the model’s misunderstanding
of comparative or quantitative language expressions such as “more than,” “not in,” or “between.”
For instance, the phrase “more than 3 courses” may be incorrectly translated to >= 3 instead of > 3.

C2: Limit Error (6.5%). This type of hallucination occurs when the model mishandles result
cardinality control in the generated SQL query. It mainly manifests as missing LIMIT clauses,

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

FSE019:10 Li Lin, Qinglin Zhu, Jintai Hong, Chong Wang, Yang Liu, and Rongxin Wu

|

Misuse of Missing Table-Column Non-Existent Data Type Duplicate
Keywords Parenthesis Mismatch Table Mismatch Insert
L Other Syntax . Violation of Invalid Use of Other Semantic
‘ plissing Quote ‘ Violations eedilics Constraint Function Violations
[|
Intent-violating
Hallucination
. _ Join Logic Violating Value Column
‘ Operator Misuse ‘ Limit Error ‘ ‘ Hallucination ‘ ‘ Seraetiesi e Selection Error Gold Error Output Format
Condition Logic Aggregation L . . Miscellaneous
‘ Mo Function Misuse. Distinct Error OrderBy Misuse GroupBy Misuse errors

Fig. 4. Taxonomy of Hallucinations in LLM-generated Queries

incorrect values for “LIMIT” or “OFFSET”, or the absence of supporting structures such as “ORDER
BY”, ultimately causing the result set to deviate from the actual intent expressed in natural language.
The hallucination often arises from the model’s misinterpretation or neglect of quantity-related
semantics in natural language queries, such as "top 5", "first few rows", "rows 10 to 20", or "at most
one result". For example, in response to the prompt “List the 2nd page of results, 10 per page”,
the model generates “SELECT * FROM results ORDER BY score DESC LIMIT 1@ OFFSET 5;7,
where the correct offset should be 10 to skip the first 10 rows. The hallucinated query instead starts
from the 6 row, returning results inconsistent with the intended pagination logic.

C3: Join Logic Hallucination (38.7%). This hallucination refers to the incorrect construction
of join logic in SQL queries, where the generated statement deviates from the intended multi-table
semantics or introduces irrelevant, spurious, or logically inconsistent relationships between tables.
The hallucination often arises from the model’s misunderstanding of entity relationships, attribute
ownership, or foreign key dependencies implied in natural language. Typical manifestations include
omitted join relations (failing to connect necessary tables), spurious joins (introducing irrelevant
tables), join type misuse (e.g., “LEFT JOIN” used instead of “INNER JOIN”), and faulty join predicates.
For example, as shown in Figure 5, the model incorrectly uses “c.id = o.id” instead of the
correct foreign key predicate “c.id = o.customer_id”, leading to logically invalid join results.

C4: Violating Value Speciﬁca— Q: Show the names of customers and their orders.
tion (12.9%). This type of hallucina- ¢ ccr ¢ name, o.order date
tion occurs when the model gener- FROM customers ¢
ates incorrect values for SQL query JOIN qrdersAo Incorrect join predicate

. . . ON c.id = 0.id; x
conditions, due to misunderstanding
the valid value range, format, or se- ON c.id = o.customer id; o
mantic constraints of the target fields
in the database. Such errors com-
monly appear in WHERE or HAVING Fig.5. C3:Join Logic Hallucination: Faulty Predicate in LLM-
clauses. For example, as shown in Fig- Generated SQL
ure 1, the LLM incorrectly filters records using “order_date = ’2023’” instead of the correct
range-based condition “BETWEEN ’2023-01-01’ AND ’2023-12-31"".

C5: Column Selection Error (15.7%). This type of hallucination occurs when the model
incorrectly selects columns in the SELECT clause. The issue may involve omitting required columns,

customers

id name

orders

L— id Customer_id Order_date

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

Validating LLM-Generated SQL Queries through Metamorphic Prompting FSE019:11

selecting extraneous ones, or confusing semantically similar fields. Such hallucinations often arise
when the model fails to align entities mentioned in natural language with their corresponding
schema fields. They are particularly common when field names are ambiguous across tables, or
when the model lacks a precise understanding of column ownership and context.

Cé6: Condition Logic Hallucination (18.6%). This type refers to errors in constructing logical
conditions, where the SQL query misrepresents the intended filtering logic due to incorrect op-
erators, incomplete expressions, or ill-formed condition structures in clauses like WHERE or JOIN.
Common manifestations include spurious conditions that were not mentioned in the prompt,
underspecified conditions that fail to capture the complete filtering intent, misconstrained pred-
icates with incorrect values or comparison operators, and faulty logical connections such as
misused AND/OR or misplaced NOT. In more subtle cases, malformed condition structures—such
as missing parentheses or incorrect nesting—lead to logical parsing errors while still producing
executable queries. For example, the query in Figure 6 attempts to retrieve users with income over
5000 who live in either NY or LA, but due to missing parentheses, the generated SQL interprets
OR with higher precedence than AND, incorrectly including all LA users regardless of income.

C7: Aggregation Function Misuse (4.5%).
This type of hallucination occurs when the
model applies incorrect aggregation operations
in SQL queries. Such errors typically arise from
misinterpreting the intended aggregation tar-
get, misunderstanding the summary method,
or applying aggregation to inappropriate at-
tributes. Common manifestations include the

Show users with income over 5000 and living in NY or LA

SELECT * FROM users
WHERE income > 5000 AND city = 'NY' OR city = 'LA"; x

WHERE income > 5000 AND (city = 'NY' OR city = 'LA"); /
Missing parentheses cause OR to take

precedence, incorrectly including all LA
users regardless of income.

use of an aggregation function that does not Fig. 6. C6: Condition Logic Hallucination: Mal-
match the user intent. For example, given a formed Boolean Structure
prompt to calculate the total quantity of ordered items, the model mistakenly uses “COUNT (*)”
instead of the correct “SUM(order_quantity)”, leading to a count of order rows rather than the
intended item total. Other forms include applying aggregation to semantically invalid fields, or
failing to properly handle aggregation alongside non-aggregated attributes.

C8: Distinct Error (14.7%). This type of hallucination refers to the incorrect use of the DISTINCT
modifier in SQL queries, leading to unintended duplication or unintended loss of result records.
Such errors occur when the model fails to correctly interpret whether uniqueness is required in the
users’ question.

C9: OrderBy Misuse (9.9%). This type of hallucination refers to errors in the construction of the
ORDER BY clause, where the sorting logic expressed in natural language is incorrectly translated into
SQL, resulting in output that does not match the expected order. Typical forms include omitting
the ORDER BY clause when sorting is required, using incorrect sort attributes or directions, or
misordering fields in multi-level sorting.

C10: GroupBy Misuse (15.9%). This type of hallucination refers to the incorrect use of the GROUP
BY clause in SQL queries. Such errors typically stem from misinterpretation of the aggregation
target, grouping unit, or statistical logic expressed in natural language. Common manifestations
include applying aggregation functions without a required GROUP BY clause, grouping by incorrect
fields that mismatch the expected result granularity, introducing unnecessary grouping in non-
aggregation queries, or failing to aggregate non-grouped fields—potentially causing runtime errors
or ambiguous semantics.

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

FSE019:12 Li Lin, Qinglin Zhu, Jintai Hong, Chong Wang, Yang Liu, and Rongxin Wu

4.3 Root Cause Analysis and Observations

To better understand the underlying factors contributing to intent-violating hallucinations in
LLM-generated SQL queries, we conduct a detailed analysis of both root causes and recurring
structural patterns observed in our annotated corpus. This section outlines the primary cognitive
and contextual limitations of LLMs, followed by empirical patterns that inspire the design of a
hallucination-aware prediction module for downstream validation.

Root Cause #1: Intention Understanding Capacity. LLMs often lack deep comprehension
of user intent and instead rely on surface-level pattern matching from training data [49]. Rather
than accurately interpreting the specific semantic requirements of a given task, LLMs tend to
reproduce frequently observed SQL patterns, which may only approximate the desired logic. This
weakness explains hallucination types where the model misinterprets the semantics of comparative
or quantitative language, such as C1/C2/C¢. This limitation further manifests in aggregation-related
hallucinations (C7-C10), which primarily stem from an insufficient understanding of the intended
aggregation target and the appropriate semantic granularity for grouping.

Root Cause #2: Context Awareness Deficiency. LLMs often lack fine-grained awareness of
database-specific context, such as schema constraints, data types, and value distributions. This
limitation directly contributes to hallucinations involving schema grounding and value alignment,
including C3/C4/C5. Without robust schema grounding, the model may hallucinate literals in
invalid formats (e.g., filtering a DATE field with “= ’2024’”), misalign natural language entities
with the wrong columns, or construct faulty join predicates between unrelated tables. These issues
illustrate that intent understanding alone is insufficient—accurate query generation also requires
deep contextual reasoning over schema and data.

Observation #1: Error Co-occurrence and Overlap Patterns. We observe that hallucination
types frequently co-occur within a single SQL query. For example, C3 often induce C5, and C1
commonly co-occurs with C4. These patterns suggest that hallucinations are not isolated phenomena
but emerge from interdependent semantic failures, forming latent error clusters that are valuable
for predictive modeling.

Observation #2: Prompt-level Inducing Factors. Certain prompt structures are more likely
to induce hallucinations. Ambiguous quantifiers increase the likelihood of C1/C2, vague temporal
expressions often lead to C4, and multi-objective queries (e.g., “list customers and count their
orders”) frequently induce C7/C10. These findings suggest that linguistic cues in prompts can serve
as effective features for estimating hallucination risk and type.

Observation #3: SQL Structural Triggers. Hallucinations are more prevalent in SQL structures
involving joins, aggregations, nested queries, or cardinality constraints. These structures provide
greater degrees of freedom for generation, often leading to logically flawed but syntactically and
semantically acceptable queries. This makes hallucinations in such structures more difficult to
detect using traditional execution-based validation methods.

These empirical insights motivate a hallucination-type retrieval module that predicts the most
likely hallucination types (Observation #1) based on a prompt and its corresponding SQL structure
(Observation #2 and Observation #3). By leveraging co-occurrence patterns, prompt semantics,
and SQL complexity, our framework proactively identifies vulnerable queries and selects targeted
metamorphic rules for validation.

5 Prompt Paraphrasing
5.1 Hallucination Knowledge Base Builder

To enable targeted prompt transformation, we construct a structured Hallucination Knowledge
Base (HKB) that captures empirical hallucination patterns in LLM-generated SQL queries. The

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

Validating LLM-Generated SQL Queries through Metamorphic Prompting FSE019:13

HKB serves as the foundation for selecting appropriate metamorphic rules, linking common failure
modes with prompt-level transformation strategies.

The construction of the HKB is grounded in our annotated hallucination corpus. Each entry
(x,q, H) consists of three elements: (1) the natural language prompt x, (2) the corresponding LLM-
generated SQL query ¢, and (3) a set of hallucination types H identified in g. To ensure consistent
comparison and retrieval, both the prompt x and query q are preprocessed through a standardization
pipeline that normalizes surface-level variations while preserving semantic structure. We detail this
standardization process in Section 5.2. The hallucination types are based on a taxonomy derived
from our empirical analysis. Since hallucinations often co-occur, H is represented as a set rather
than a single label. These features allow us to embed the HKB into a searchable latent space,
supporting similarity-based retrieval of past failure cases during inference. In later stages, this
knowledge base allows us to retrieve the most relevant hallucination types for a new prompt and
apply corresponding metamorphic transformation rules tailored to those hallucination risks.

5.2 Potential Hallucination Type Retrieval

To enable targeted metamorphic transformations, we retrieve potential hallucination types by
querying the HKB. Figure 7 shows the overall retrieval workflow. Given a user question and its
corresponding LLM-generated SQL query, we first normalize and embed both inputs to form a
hybrid representation. These embeddings are fused into a hybrid representation via a multi-head
cross-attention module to capture semantic alignment. We then use this hybrid embedding to query
the HKB and retrieve the top-k most similar historical cases. Each case is annotated with a set of
hallucination types in HKB. Since cases may contain multiple types, we aggregate all retrieved
labels and apply a voting strategy to rank them by frequency. The top-r types are selected as the
most likely hallucination risks for the input.

Prompt and SQL Normalization. To enable structure-aware matching and reduce surface-level
variability, we perform normalization on both the user question and the LLM-generated SQL query.
The goal is to abstract away irrelevant lexical differences while preserving the core semantics,
ensuring robust retrieval and matching in the HKB. For SQL normalization, we parse the query
into an abstract syntax tree (AST) using sQLGLOT [50], and apply a depth-first traversal to replace
node values with canonical placeholders. Specifically, we normalize schema-bound table names,
column aliases, literals and expression aliases into generic tokens. For prompt normalization, we
use sPACY [51] to identify named entities and numbers in the question text. Nouns and proper
nouns are replaced with [NOUN], while numeric tokens are replaced with [NUMBER]. This aligns
with the SQL normalization strategy, enabling unified hybrid embedding for prompt-query pairs
during hallucination type retrieval.

Retrieval Process. Given the normalized prompt x and SQL query ¢, we first obtain their
contextualized token-level embeddings using a shared bidirectional Transformer encoder:

h;z = Encode(%), h; =Encode(§), hs hy € RF

To capture cross-modal semantic alignment, we apply a bidirectional multi-head cross-attention
mechanism. Specifically, each modality is used as the query to attend to the other:

h™79 = MHA(hs, hg hg), h77% = MHA(hg, hy. hy)

The final fused representation is obtained by concatenating the attention outputs along the sequence
dimension, followed by mean pooling:

z = MeanPool (Concat(h*9, h97%)) € RY

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

FSE019:14 Li Lin, Qinglin Zhu, Jintai Hong, Chong Wang, Yang Liu, and Rongxin Wu

™. [Listall customer B8 it D) 1] | Condition Loy
gic
@p | nameswho.. @O vholACTION] I [Hallucination
P o P " Multi-head Cross
User Question rompt, romp! Attention
Normalization Embedding Casel
Jus e B o E

Case2

SELECT C.name a‘cg,v SELECT I I l Voting Function
FROM ... FROM - —) Hallucination
LLM-generated SQL SQL Hallucination Case3 ;
N lizati . Potential
Query ormalization Embedding Knowledge Base Similar Cases Hallucination Types
L |
\ | : \
Hybrid Embedding Potential Hallucination Selection

Fig. 7. Workflow of Potential Hallucination Type Retrieval

We compare this global embedding z with all entries in the HKB, each of which stores a precomputed
embedding z;, and compute their cosine similarity:

sim; = cos(z,z;), i=1,...,N
The top-k most similar entries are selected as candidate matches for hallucination type inference.

Voting Strategy. Each retrieved HKB unit is associated with one or more hallucination types.
Let H; denote the hallucination type set of the i-th retrieved match. To compute the aggregated
confidence for a specific hallucination type 7, we perform similarity-weighted scoring across the

top-k matches:
k

score(7) = % ; I[r € H;] - simy
where [[] is the indicator function. Hallucination types with scores exceeding a threshold 0y, are
selected as final predictions:
7—{pred = {r | score(r) = Osim}
This soft aggregation strategy enables robust hallucination type identification by integrating partial
signals from semantically similar examples.

Hyperparameter Settings. In our experiments, we set the number of retrieved cases k = 10
and the similarity threshold 8gm = 0.75. The number of predicted hallucination types r varies
dynamically depending on how many type scores exceed the threshold. These settings strike
a balance between precision and recall in hallucination type retrieval and are fixed across all
downstream experiments.

5.3 MR Rules Construction

Based on our empirical analysis, we design 26 targeted metamorphic rules for each hallucination

type and organize them into four categories of prompt transformation strategies; due to space

limitations, the full rule set is available in our GitHub repository [48]. Table 2 summarizes these MR
categories, along with their transformation strategies, targeted hallucination types, and examples.

e OMR-1: Intent Perturbation & Reversal. This category introduces slight modifications to
the original intent—such as changing comparison operators, reversing sorting directions, or
altering temporal constraints—to assess whether the generated SQL query adapts appropriately.
Violations of expected behavioral changes indicate semantic hallucinations.

e QOMR-2: Logical Decomposition. Complex or compound prompts are rewritten into step-by-
step instructions that explicitly decompose multi-part logic, such as filtering, grouping, or joining.
This strategy guides the model toward more robust reasoning paths and mitigates shortcut-based
generation.

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

Validating LLM-Generated SQL Queries through Metamorphic Prompting FSE019:15

Table 2. Metamorphic Rule Categories for Prompt Transformation in NL2SQL.

MR Category Targeted Types Example Transformation

QMR-1: Intent Perturbation ~ C1, C4, C6 “List products above 100" —

& Reversal “List products below 100”

QMR-2: Logical Decomposi- C6, C7, C10 “Find users in NY or LA with income > 5000” —

tion “Step 1: Filter income > 5000. Step 2: Filter location is NY or LA”

QMR-3: Constraint Expliciti- C2, C6, C9 “Return the second page of results” —

zation “Assume 10 results per page. Return rows 11-20 sorted by time”

QOMR-4: Error-Type Reflec- All “Show orders in 2024” —

tion “Show orders in 2024. Then verify whether the SQL query introduces a value

specification hallucination.”

¢ QOMR-3: Constraint Explicitization. This category clarifies implicit constraints within the
original prompt, such as pagination logic, result limits, or sorting criteria, by reformulating
vague instructions into precise control parameters. It helps prevent hallucinations caused by
underspecified or ambiguous expressions.

e QOMR-4: Error-Type Reflection. This category integrates meta-level reminders or preemptive
warnings based on known hallucination types. It simulates user feedback or domain knowledge
to guide the model away from historically frequent failure modes.

To detect hallucinations, each prompt transformation is linked to a MR—such as equivalence,
subset, or superset—which specifies the expected consistency or deviation in SQL execution results.
Given a selected MR rule and few-shot exemplars illustrating its transformation pattern, we
employ an auxiliary LLM to generate the corresponding metamorphic prompt. The original and
metamorphic queries are then compared using these predefined relationships in the Cross Validation
module to determine whether the original query exhibits intent-violating hallucination. Due to
space limitations, we provide detailed descriptions and concrete examples of HKB construction
and MR rule usage in supplementary material [52].

6 Cross-Validation

Once the original and metamorphic SQL queries are generated and executed against the same
database, MRSQLGen performs cross validation to detect hallucinations based on behavioral
consistency. A straightforward strategy might flag a hallucination whenever any metamorphic
query yields a different result from the original. However, due to the inherent uncertainty in
LLM reasoning, such strict consistency can lead to high false positives. To reduce sensitivity to
such noise, we adopt a majority-based voting strategy inspired by prior work [22], and tailored
to the metamorphic prompting paradigm. Specifically, each prompt transformation is associated
with a predefined MR that defines the expected relation between the output of the original and
the transformed queries (e.g., equivalence, subset, superset). MRSQLGEN checks whether each
metamorphic query satisfies its corresponding MR with the original result. A hallucination is
flagged only if the proportion of violated relationships exceeds a threshold, which our experiments
identify as 80% to best balance precision and recall. This approach tolerates minor deviations
while still identifying cases where the original query is semantically unstable under controlled
intent-preserving variations—indicating an intent-violating hallucination.

7 Evaluation
Our evaluation is designed to answer the following research questions (RQs):

e RQ1: Can MRSQLGEN effectively detect intent-violating hallucinations in LLM-generated SQL?
How does MRSQLGEN compare to state-of-the-art hallucination detection methods?

e RQ2: How do the Prompt Paraphrasing and Cross Validation modules contribute to detection
performance?

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

FSE019:16 Li Lin, Qinglin Zhu, Jintai Hong, Chong Wang, Yang Liu, and Rongxin Wu

7.1 Experimental Setup

7.1.1 Dataset. We conduct hallucination detection experiments on two widely-used NL2SQL
benchmarks: SPIDER [11] and BIrD [23]. SPIDER is a cross-domain dataset comprising 10,181 natural
language questions over 200 databases. In our empirical study (Section 4), we used half of it to build
the HKB. To ensure unbiased evaluation and demonstrate the generalizability of our method, we use
the remaining half for hallucination detection experiments. To further alleviate distribution-specific
concerns, we evaluate MRSQLGEN not only on SPIDER but also on BIRD, a substantially different
benchmark in terms of schema, domain, and linguistic characteristics, which consists of 10,962
text-SQL pairs across 95 databases and features more complex SQL structures [23].

Both datasets provide ground truth SQL annotations, allowing us to determine whether an
LLM-generated query constitutes a hallucination. Specifically, we use the Execution Accuracy
(EX) metric—whether the generated query produces the same result as the ground-truth query
on the database—to label hallucinated outputs. A generated SQL is considered intent-violating
hallucinated if it produces a valid output but deviates semantically from the ground-truth (i.e., fails
EX while being executable). For each question, we use an LLM to generate a corresponding SQL
query. We then execute the query and discard cases with syntax or runtime errors (non-executable
queries), since they fall outside the scope of intent-violating hallucination detection. The remaining
executable-but-possibly-hallucinated queries form our hallucination detection dataset.

7.1.2 Evaluation Metrics. We use the following metrics to evaluate the effectiveness of intent-
violating hallucination detection in MRSQLGEN:

e Precision. Precision is the percentage of hallucinations correctly identified by MRSQLGEN
out of all queries it classifies as hallucinations. It measures how accurately the system detects
hallucinations. A higher precision indicates fewer false positives [28].

e Recall. Recall is the percentage of actual hallucinations detected by MRSQLGEN. It measures
the system’s ability to find all hallucinations. A higher recall indicates fewer false negatives [28].

e F1 Score. The F1 score is the harmonic mean of precision and recall, providing a balanced evalu-
ation when both accuracy and completeness are important. It reflects the overall effectiveness of
the hallucination detection method [28].

7.1.3 Models. Our primary test subject is GPT-40. OpenAI's GPT-4o0 is a black-box LLM and
represents a noteworthy milestone in the progress of transformer-based language models [53].
We also evaluate four representative LLMs, including three open-source models (CodeLlama-13B-
Instruct [54], Deepseek-Coder-V2:16B [45], and Qwen2.5-Coder-14B [55]) and one closed-source
models (GPT-40-mini [53]). These models are selected for their strong performance on NL2SQL
tasks, as well as their widespread adoption in both academic and industrial settings. The temperature
of all LLMs was set to 0.0 in all experiments to reduce randomness.

7.14 Baselines. We compare MRSQLGEN against two representative baselines.

e SELFCHECKGPT [19] is a state-of-the-art confidence-based hallucination detector originally
designed for open-ended text generation. It estimates the likelihood of hallucination by sampling
multiple responses from the LLM and measuring their consistency with the original output. To
adapt SELFCHECKGPT to SQL generation, we treat the LLM-generated SQL as the base query
and compute token-level n-gram overlap between the base and sampled queries. Following the
original setup, we use a sampling temperature of 1.0 and apply a threshold-based rule to classify
a query as hallucinated if its sampled variants show low consistency.

o LLM-as-a-judge [56] leverages the LLM to reflect on and assess the hallucination of its generated
output. In our evaluation, we consider two LLM-as-a-judge settings. LLM-as-a-Judge Self

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

Validating LLM-Generated SQL Queries through Metamorphic Prompting FSE019:17

(LAJ-Self), which uses the same model that generates the SQL to judge its own output, and
LLM-as-a-Judge GPT-5.1 (LAJ-G5), which employs a stronger external judge, GPT-5.1, to assess
the generated SQL. In both settings, the judge model is prompted to determine whether the
SQL accurately captures the user intent expressed in the input natural language query, without
access to any external ground truth or execution feedback. Specifically, the model is instructed
to assign a binary label: 1 if the query is considered hallucinated, and 0 otherwise. To maintain
diversity, we set temperature 0.5 and perform multiple sampling rounds and apply majority
voting over the predicted labels to make the final decision.

7.1.5 Environment. We perform our experiments on a workstation an 8-core “11th Gen Intel(R)
Core(TM) i7-11700@2.50GHz” processor, 64GB of memory, and NVIDIA RTX A6000 with 48GB of
VRAM running Ubuntu 22.04.1 LTS. For open-source LLMs, we deploy a local API server based on
vLLM [57] which is a unified library for LLM serving and inference. To ensure a fair comparison,
all methods use the same underlying LLM across experiments.

7.2 RAQT: Effectiveness and Comparison with Baselines

Table 3 summarizes the results of MRSQLGEN against SELFCHECKGPT (SCG) and two LLM-as-
a-judge variants, LAJ-Self and LAJ-G5, on the SPiDER and Birp benchmarks. Overall, MRSQL-
GEN consistently delivers superior precision, recall, and F1 scores across all evaluated models.

Table 3. Comparison between MRSQLGEN, SELFCHECKGPT, and LLM-as-a-judge

Dataset GPT-10 GPT-40-mini CodeLlama Deepseek-Coder Qwen2.5-Coder
Metric MRS SCG LAJ-Self LAIG5 | MRS SCG LAJSelf LAJ-G5 | MRS SCG LAJSelf LAJ-G5 | MRS SCG LAJSelf LAJ-G5 | MRS SCG LAJSelf LAJ-Gs

Spider (P)
Spider (R)
Spider (F1)

0782 0200 0.357 0.716
0560 0.083 0.074 0.369
0.653 0.117 0.123 0.487

0.651 0294 0577 0.571
0.690 0.059 0.180 0.400
0.670 0.099 0.275 0.470

0.687 0358 0.276 0.257
0973 0372 0225 1.000
0.805 0.365 0.248 0.409

0478 0454 0366 0.205
0883 0.187 0317 1.000
0.620 0.265 0.339 0.340

0.651 0.291 0.666 0.167
0754 0112 0.089 1.000
0.699 0.162 0.157 0.286

BIRD (P)
BIRD (R)
BIRD (F1)

0.696 0.666 0.619 0.604
0692 0.124 0349 0.454
0.694 0.209 0.446 0.518

0.803 0.564 0.562 0.623
0.714 0.108 0.407 0.617
0.756 0.182 0.472 0.620

0905 0280 0.302 0.351
0.986 0.421 0.220 0.791
0.944 0336 0.254 0.486

0.816 0.583 0.565 0.519

0933 0.241 0.278 0.717

0.870 0.341 0.373 0.602

Note: MRS = MR-SQLGen, SCG = SelfCheckGPT, LAJ-Self = model self-judging, LAJ-G5 = judged by GPT-5.1. P = Precision, R = Recall, F1 =
F1 Score.

0701 0.621 0.545 0.531
0.818 0250 0.152 0.558
0.755 0.356 0.238 0.544

On the SpIDER dataset, MRSQLGEN achieves the highest F1 scores across all models. For example,
with GPT-40, MRSQLGEN obtains an F1 score of 0.653, substantially outperforming SELFCHECK-
GPT (0.117) as well as both LLM-as-a-judge variants, including LAJ-Self (0.123) and the stronger
external-judge setting LAJ-G5 (0.487). Similar trends are observed with open-source models
such as CodeLlama and Deepseek-Coder, where MRSQLGEN consistently yields higher precision
and recall, indicating that it can detect a broader range of intent-violating hallucinations while
maintaining a low false positive rate. On the BIrp dataset, which contains more complex NL2SQL
tasks, MRSQLGEN still demonstrates strong generalization capability. For instance, with CodeLlama,
MRSQLGEN achieves an F1 score of 0.944, compared to 0.336 for SELFCHECKGPT, 0.254 for LAJ-Self,
and 0.486 for LAJ-G5. These results indicate that although our hallucination taxonomy is de-
rived from SpIDER—a widely recognized and representative NL2SQL benchmark—we intentionally
define hallucination types at the level of general SQL semantics (e.g., aggregation granularity
and condition-logic correctness), rather than schema- or dataset-specific patterns. The strong
performance on the more complex BIrD dataset demonstrates that the taxonomy and the derived
metamorphic rules generalize well beyond the dataset used for annotation. Paired bootstrap
significance tests (p < 0.05) further validate that the observed improvements of MRSQLGEN over
both baselines are statistically significant.

When compared with existing approaches, MRSQLGEN shows clear advantages. Across both
datasets, MRSQLGEN achieves consistent improvements in F1 scores, with gains ranging from
112.1% to 576.8% over SELFCHECKGPT, from 55.6% to 430.9% over the self-judging setting (LAJ-
Self), and from 21.9% to 144.4% over the stronger external-judge setting (LAJ-G5). The weaker

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

FSE019:18 Li Lin, Qinglin Zhu, Jintai Hong, Chong Wang, Yang Liu, and Rongxin Wu

performance of SELFCHECKGPT mainly stems from its reliance on sampling multiple variants of
the same prompt. LLMs often generate nearly identical SQL queries across these samples, limiting
diversity and preventing the method from exposing subtle semantic inconsistencies, which leads
to low recall. Similarly, LLM-as-a-judge exhibits inherent limitations on structured tasks such as
NL2SQL. In the self-judging setting (LAJ-Self), the model tends to suffer from self-confirmation
bias, overestimating the correctness of its own generated SQL and remaining insensitive to fine-
grained intent deviations. Using a stronger external judge (LAJ-G5) partially alleviates this issue by
improving recall and recovering many previously missed hallucinations; however, it still lacks direct
access to execution semantics and relies primarily on post-hoc semantic reasoning. In contrast,
MRSQLGEN leverages metamorphic prompting to generate intent-preserving transformations
that guide the model along diverse reasoning paths, while the cross-validation module ensures
consistency checks at the execution level. This combination allows MRSQLGEN to achieve higher
recall without sacrificing precision, delivering more reliable and accurate hallucination detection
in NL2SQL scenarios.

Answer to RQ1: MRSQLGEN can effectively detect intent-violating hallucinations in LLM-
generated SQL, achieving consistently higher precision, recall, and F1 across all baselines.

7.3 RQ2: Ablation Study

To quantify the benefit of our designs, we conduct an ablation study focusing on the Prompt
Paraphrasing and Cross Validation modules. In the first variant, MRSQLGEN-PP, we replace the
Prompt Paraphrasing module with a naive strategy that prompts the LLM to generate ten equivalent
metamorphic prompts, without using the HKB to retrieve specific hallucination types for tailoring
MR rules. In the second variant, MRSQLGEN-CV, we adjust the cross-validation strategy to flag
hallucinations immediately upon detecting any inconsistency, instead of requiring a majority
violation. Due to computational constraints, all ablation experiments are evaluated only on GPT-4o.

Table 4. Ablation study of MRSQLGEN on Spider and BIRD using GPT-40

\ Spider l \ BIRD |
Method ‘ g R Fi ‘ Improvement (F1) ‘ R Fi ‘ Improvement (F1)
MRSQLGen 0.782 0.560 0.653 - 0.696 0.692 0.694 -
MRSQLGen-PP 0.800 0.454 0.579 +12.8% 0.600 0.540 0.568 +22.2%
MRSQLGen-CV | 0.726 0.572 0.640 +2.0% 0.491 0.872 0.628 +10.5%

Note: P = Precision, R = Recall, F1 = F1 Score. Improvement (F1) is the percentage gain of MRSQLGEN over each ablation.

Table 4 presents the ablation study results. When the Prompt Paraphrasing module is replaced
with a naive strategy (MRSQLGEN-PP), the F1 score of MRSQLGEN improves by approximately
12.8% on SPIDER and 22.2% on BIRD. This indicates that the HKB-guided retrieval mechanism
plays a critical role in generating targeted metamorphic prompts that effectively expose intent-
violating hallucinations. Without this targeted paraphrasing, the transformations become less
diverse, reducing the ability to detect subtle hallucinations. Similarly, when the Cross Validation
strategy is relaxed, MRSQLGEN shows an improvement of approximately 2.0% on SPIDER and 10.5%
on BIrp. This finding suggests that a majority agreement across transformed prompts is crucial for
improving robustness and reducing false positives. Without this vote mechanism, the framework
tends to over-flag queries, leading to degraded precision and overall detection reliability.

Answer to RQ2: Both the Prompt Paraphrasing and Cross Validation modules are essential,
as removing either notably reduces F1 and weakens hallucination detection.

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

Validating LLM-Generated SQL Queries through Metamorphic Prompting FSE019:19

8 Discussion
8.1 System Overhead, Complexity and Practical Deployment

We evaluate the computational overhead of MRSQLGEN in comparison with SELFCHECKGPT and
LLM-as-a-judge, using GPT-40 as the underlying model for all methods. We focus on the self-
judging setting (LAJ-Self), which ensures a fair and model-agnostic comparison. As shown in
Table 5, MRSQLGEN incurs higher token usage due to metamorphic prompt generation, but its
overall cost remains comparable to LAJ-Self and within a practical range. On SPIDER, MRSQLGEN
requires 7.9k tokens and 53.9 seconds per task, introducing about 13 seconds of additional latency
over LAJ-Self (40.9s) while improving F1 from 0.123 to 0.653 (+0.53). On Birp, MRSQLGEN incurs a
similar overhead (73.4s vs. 62.4s) and achieves an F1 gain of +0.248 (0.694 vs. 0.446). In contrast,
SELFCHECKGPT reduces computational cost but suffers substantially lower accuracy. Overall,
MRSQLGEN offers a favorable accuracy-efficiency trade-off for practical NL2SQL deployment.

In practice, the engineering overhead of MRSQLGEN is modest. First, maintaining the hallu-
cination knowledge base (HKB) is lightweight, as it consists of a compact and largely static set
of hallucination patterns and transformation templates. Importantly, the same HKB generalizes
well across both SPIDER and BIrp without dataset-specific re-engineering. Second, prompt/SQL
normalization as well as hybrid embedding-based retrieval are low-cost preprocessing steps that
execute within milliseconds and contribute negligible additional runtime overhead. As a result,
MRSQLGEN can be integrated as an online validation layer in existing NL2SQL systems with
minimal engineering effort.

Table 5. Token Usage and Runtime Comparison on GPT-40

Dataset | MRSQLGEN | SelfCheckGPT LA]J-Self
Spider BIRD | Spider BIRD | Spider BIRD

token 7,925 13,489 | 2,389 4,636 7,725 26,173

time(s) 53.92 73.39 29.45 48.01 40.88 62.40

Note: time(s) reports the average inference time per task.

8.2 Failure Case Analysis

We conduct a qualitative analysis of 100 randomly sampled cases where MRSQLGEN fails to correctly
detect hallucinations, and identify two dominant failure modes. First, inaccurate hallucination-type
retrieval from the HKB can lead to misaligned MR rule selection, causing MRSQLGen to apply
transformations that do not target the actual faulty logic in the original query and resulting in false
negatives. Second, even when the correct hallucination type is identified, the auxiliary LLM may
introduce new hallucinations during metamorphic query generation, especially under structurally
complex transformations, which can violate the intended MR constraints and lead to false positives.
Concrete examples illustrating both failure modes are provided in the supplementary material [58].

8.3 Threats to Validity

Internal Validity. Our empirical study relies on manual annotation of hallucination types, which
may introduce subjective bias. To mitigate this, three authors independently labeled the data and
resolved disagreements through discussion to ensure consistency.

External Validity. The external threats to validity stem from the limited number of LLMs used
in our evaluation. While more test subjects could potentially improve the generalizability of our
findings, we have selected five widely adopted models—spanning both proprietary and open-source
variants—that are representative of current LLM development. In future work, we plan to extend
our evaluation to additional models to further validate the robustness of MRSQLGEN.

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

FSE019:20 Li Lin, Qinglin Zhu, Jintai Hong, Chong Wang, Yang Liu, and Rongxin Wu

9 Related Work

NL2SQL Systems and Benchmarks. NL2SQL automatically translates natural language questions
to SQL queries, bridging the gap between non-expert users and databases and enabling applications
like intelligent database services, automated data analysis, and database question-answering. Recent
LLM-based approaches have improved SQL generation accuracy via in-context learning and fine-
tuning [59-63]. These models are typically evaluated on benchmark datasets such as WikiSQL [64]
and SpIDER [11]. However, these benchmarks rely on ground-truth queries and metrics like Exact
Match (EM) and Execution Accuracy (EX), limiting evaluation to controlled settings and failing to
address real scenarios with no canonical solution. In contrast, we propose a comprehensive testing
methodology and evaluation tool to validate LLM-generated SQL queries in real time without
external resources.

Hallucinations in LLMs. The term “hallucination” in NLP describes generated text that is
nonsensical or deviates from the source content [65]. Hallucinations are classified as intrinsic
(contradicting the source) and extrinsic (unverifiable from the source) [66]. This concept extends to
code generation, where LLMs may produce code beyond intended instructions. A recent taxonomy
defines three types of code hallucinations: (i) task requirement conflicts (code failing the prompt
intent), (ii) factual knowledge conflicts (violating programming knowledge, e.g., API misuse), and
(iii) project context conflicts (code incompatible with the project environment) [67]. These align
with input, knowledge, and context misalignments akin to NLP. However, there is a lack of research
on hallucination phenomena in the field of NL2SQL systems. To bridge this gap, we conduct a
comprehensive empirical study of hallucinations in NL2SQL systems, with the goal of informing the
design of our approach for efficiently detecting hallucinations in real-world development scenarios.

Hallucination Detection Techniques. Existing methods mainly fall into two categories:
confidence estimation, which relies on model-internal signals [68—-72], and LLM-as-a-judge, which
uses either smaller detectors or external LLMs as evaluators [65, 73—-76]. While effective in NLG
tasks, these approaches are less practical for code-related tasks such as NL2SQL, where reliance on
internal signals or external evaluators limits scalability and adaptability. In this paper, we propose
a hallucination detection method that requires no external resources or model confidence scores,
enabling real-time identification of SQL hallucinations in practice.

10 Conclusion

In this paper, we present MRSQLGEN, a novel hallucination detection framework for NL2SQL tasks
based on the metamorphic prompting paradigm. MRSQLGEN systematically rewrites input prompts
using transformation rules and detects intent-violating hallucinations by comparing execution
results under predefined metamorphic relationships. Experimental results on SPIDER and BIrD
benchmarks demonstrate that MRSQLGEN consistently outperforms strong baselines, including
SELFCHECKGPT and LLM-as-a-judge, across multiple LLMs.

Data Availability
The source code of MRSQLGEN is available at https://github.com/MRSQLGen/MRSQLGen.

Acknowledgement

We sincerely thank the anonymous reviewers for their valuable and insightful feedback. This
research was supported by the Natural Science Foundation of China (Grant No. 62272400) and
Fujian Provincial Natural Science Foundation of China (Grant No. 2025J010002). Li Lin began this
work while affiliated with Xiamen University. Now he is a Ph.D. student at Zhejiang University.
Rongxin Wu is the corresponding author and works as a member of Xiamen Key Laboratory of
Intelligent Storage and Computing in Xiamen University.

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

https://github.com/MRSQLGen/MRSQLGen

Validating LLM-Generated SQL Queries through Metamorphic Prompting FSE019:21

References

(1]
(2]

(3]

(4]
5]
(6]
(7]

—
A=)
—

[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]

[20]

[21]
[22]

[23]

[24]

“pandas,” https://github.com/pandas-dev/pandas, 2024, accessed: 2025-03-04.

S. Agarwal, G. Y.-Y. Chan, S. Garg, T. Yu, and S. Mitra, “Fast natural language based data exploration with samples,” in
Companion of the 2023 International Conference on Management of Data, 2023, pp. 155-158.

R.]J. L. John, D. Bacon, J. Chen, U. Ramesh, J. Li, D. Das, R. Claus, A. Kendall, and J. M. Patel, “Datachat: An intuitive
and collaborative data analytics platform,” in Companion of the 2023 International Conference on Management of Data,
2023, pp. 203-215.

X. V. Lin, R. Socher, and C. Xiong, “Bridging textual and tabular data for cross-domain text-to-sql semantic parsing,”
arXiv preprint arXiv:2012.12627, 2020.

J. Jiang, H. Xie, Y. Shen, Z. Zhang, M. Lei, Y. Zheng, Y. Fang, C. Li, D. Huang, W. Zhang et al., “Siriusbi: Building
end-to-end business intelligence enhanced by large language models,” arXiv preprint arXiv:2411.06102, 2024.

J. Lian, X. Liu, Y. Shao, Y. Dong, M. Wang, Z. Wei, T. Wan, M. Dong, and H. Yan, “Chatbi: Towards natural language to
complex business intelligence sql,” arXiv preprint arXiv:2405.00527, 2024.

J. Sen, F. Ozcan, A. Quamar, G. Stager, A. Mittal, M. Jammi, C. Lei, D. Saha, and K. Sankaranarayanan, “Natural language
querying of complex business intelligence queries,” in Proceedings of the 2019 International Conference on Management
of Data, 2019, pp. 1997-2000.

Y. Song, S. Ezzini, X. Tang, C. Lothritz, J. Klein, T. Bissyandé, A. Boytsov, U. Ble, and A. Goujon, “Enhancing text-to-sql
translation for financial system design,” in Proceedings of the 46th International Conference on Software Engineering:
Software Engineering in Practice, 2024, pp. 252-262.

P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experience: Evaluating the usability of code generation
tools powered by large language models,” in Chi conference on human factors in computing systems extended abstracts,
2022, pp. 1-7.

H. Ding, V. Kumar, Y. Tian, Z. Wang, R. Kwiatkowski, X. Li, M. K. Ramanathan, B. Ray, P. Bhatia, S. Sengupta et al., “A
static evaluation of code completion by large language models,” arXiv preprint arXiv:2306.03203, 2023.

T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li,]. Ma, L. Li, Q. Yao, S. Roman et al., “Spider: A large-scale human-
labeled dataset for complex and cross-domain semantic parsing and text-to-sql task,” arXiv preprint arXiv:1809.08887,
2018.

ANTLR Project, “ANTLR: ANother Tool for Language Recognition,” https://www.antlr.org/, 2025, accessed: 2025-06-05.
T. Mao, “Sqlglot: An open source sql parser, transpiler, and optimizer,” https://github.com/tobymao/sqlglot, 2022,
accessed: 2025-07-07.

C.Li, B. Bi, M. Yan, W. Wang, and S. Huang, “Addressing semantic drift in generative question answering with auxiliary
extraction,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 2: Short Papers), 2021, pp. 942-947.

J. Maynez, S. Narayan, B. Bohnet, and R. McDonald, “On faithfulness and factuality in abstractive summarization,”
arXiv preprint arXiv:2005.00661, 2020.

M. Huang, X. Zhu, and J. Gao, “Challenges in building intelligent open-domain dialog systems,” ACM Transactions on
Information Systems (TOIS), vol. 38, no. 3, pp. 1-32, 2020.

N. Varshney, W. Yao, H. Zhang, J. Chen, and D. Yu, “A stitch in time saves nine: Detecting and mitigating hallucinations
of llms by validating low-confidence generation,” arXiv preprint arXiv:2307.03987, 2023.

J.-Y. Yao, K.-P. Ning, Z.-H. Liu, M.-N. Ning, Y.-Y. Liu, and L. Yuan, “Llm lies: Hallucinations are not bugs, but features
as adversarial examples,” arXiv preprint arXiv:2310.01469, 2023.

P. Manakul, A. Liusie, and M. J. Gales, “Selfcheckgpt: Zero-resource black-box hallucination detection for generative
large language models,” arXiv preprint arXiv:2303.08896, 2023.

L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen, W. Peng, X. Feng, B. Qin et al., “A survey on hallucination
in large language models: Principles, taxonomy, challenges, and open questions,” ACM Transactions on Information
Systems, vol. 43, no. 2, pp. 1-55, 2025.

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing et al, “Judging llm-as-a-judge
with mt-bench and chatbot arena,” Advances in Neural Information Processing Systems, vol. 36, pp. 46 595-46 623, 2023.
J. C. Yang, D. Dalisan, M. Korecki, C. I. Hausladen, and D. Helbing, “Llm voting: Human choices and ai collective
decision-making,” in Proceedings of the AAAI/ACM Conference on Al Ethics, and Society, vol. 7, 2024, pp. 1696-1708.
J. Li, B. Hui, G. Qu, J. Yang, B. Li, B. Li, B. Wang, B. Qin, R. Geng, N. Huo et al,, “Can llm already serve as a database
interface? a big bench for large-scale database grounded text-to-sqls,” Advances in Neural Information Processing
Systems, vol. 36, pp. 42 330-42 357, 2023.

Z.Q. Zhou, D. Huang, T. Tse, Z. Yang, H. Huang, and T. Chen, “Metamorphic testing and its applications,” in Proceedings
of the 8th International Symposium on Future Software Technology (ISFST 2004). ~Software Engineers Association Xian,
China, 2004, pp. 346-351.

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

https://github.com/pandas-dev/pandas
https://www.antlr.org/
https://github.com/tobymao/sqlglot

FSE019:22 Li Lin, Qinglin Zhu, Jintai Hong, Chong Wang, Yang Liu, and Rongxin Wu

[25]
[26]

[27]

[28]
[29]
[30]

[31]

[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]

[51]
[52]

T.Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a new approach for generating next test cases,” arXiv
preprint arXiv:2002.12543, 2020.

S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey on metamorphic testing,” IEEE Transactions on
software engineering, vol. 42, no. 9, pp. 805-824, 2016.

N. Li, Y. Li, Y. Liu, L. Shi, K. Wang, and H. Wang, “Drowzee: Metamorphic testing for fact-conflicting hallucination
detection in large language models,” Proceedings of the ACM on Programming Languages, vol. 8, no. OOPSLA2, pp.
1843-1872, 2024.

W. Wu, Y. Cao, N. Yi, R. Ou, and Z. Zheng, “Detecting and reducing the factual hallucinations of large language models
with metamorphic testing,” Proceedings of the ACM on Software Engineering, vol. 2, no. FSE, pp. 1432-1453, 2025.

B. Yang, M. A. Al Mamun, J. M. Zhang, and G. Uddin, “Hallucination detection in large language models with
metamorphic relations,” Proceedings of the ACM on Software Engineering, vol. 2, no. FSE, pp. 425-445, 2025.

P. Ma, S. Wang, and J. Liu, “Metamorphic testing and certified mitigation of fairness violations in nlp models.” in IJCAI
vol. 20, 2020, pp. 458—465.

C. Tsigkanos, P. Rani, S. Miiller, and T. Kehrer, “Large language models: The next frontier for variable discovery within
metamorphic testing?” in 2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2023, pp. 678-682.

P. Xue, L. Wu, Z. Yang, X. Li, Z. Yu, Z. Jin, G. Li, Y. Xiao, and J. Wu, “Exploring and lifting the robustness of llm-powered
automated program repair with metamorphic testing,” arXiv preprint arXiv:2410.07516, 2024.

S. Hyun, M. Guo, and M. A. Babar, “Metal: Metamorphic testing framework for analyzing large-language model
qualities,” in 2024 IEEE Conference on Software Testing, Verification and Validation (ICST). 1EEE, 2024, pp. 117-128.
X. Wang and D. Zhu, “Validating llm-generated programs with metamorphic prompt testing,” arXiv preprint
arXiv:2406.06864, 2024.

D. Rai and Z. Yao, “An investigation of neuron activation as a unified lens to explain chain-of-thought eliciting
arithmetic reasoning of llms,” arXiv preprint arXiv:2406.12288, 2024.

J. Dong, J. Sun, W. Zhang, J. S. Dong, and D. Hao, “Contested: Consistency-aided tested code generation with llm,”
Proceedings of the ACM on Software Engineering, vol. 2, no. ISSTA, pp. 596-617, 2025.

M. A. Team, “Mistral-7b-instruct-v0.2,” https://huggingface.co/mistralai/Mistral- 7B-Instruct-v0.2, 2023, accessed: 2025-
08-14.

S. Zhou, T. Li, K. Wang, Y. Huang, L. Shi, Y. Liu, and H. Wang, “Understanding the effectiveness of coverage criteria for
large language models: A special angle from jailbreak attacks,” arXiv preprint arXiv:2408.15207, 2024.

T.Y. Chen, P.-L. Poon, and X. Xie, “Metric: Metamorphic relation identification based on the category-choice framework,”
Journal of Systems and Software, vol. 116, pp. 177-190, 2016.

C.-A. Sun, A. Fu, P.-L. Poon, X. Xie, H. Liu, and T. Y. Chen, “Metric: A metamorphic relation identification technique
based on input plus output domains,” IEEE Transactions on Software Engineering, vol. 47, no. 9, pp. 1764-1785, 2019.
S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Corts, “Metamorphic testing of restful web apis,” in Proceedings of the 40th
International Conference on Software Engineering, 2018, pp. 882-882.

Z.Q. Zhou, L. Sun, T. Y. Chen, and D. Towey, “Metamorphic relations for enhancing system understanding and use,”
IEEE Transactions on Software Engineering, vol. 46, no. 10, pp. 1120-1154, 2018.

C. Xu, V. Terragni, H. Zhu, J. Wu, and S.-C. Cheung, “Mr-scout: Automated synthesis of metamorphic relations from
existing test cases,” ACM Transactions on Software Engineering and Methodology, vol. 33, no. 6, pp. 1-28, 2024.
OpenAl, “Chatgpt: Optimizing language models for dialogue,” https://openai.com/blog/chatgpt, 2022, accessed: 2025-
03-09.

D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen, X. Bi, Y. Wu, Y. Li et al., “Deepseek-coder: When the
large language model meets programming-the rise of code intelligence,” arXiv preprint arXiv:2401.14196, 2024.

D. Gao, H. Wang, Y. Li, X. Sun, Y. Qian, B. Ding, and J. Zhou, “Text-to-sql empowered by large language models: A
benchmark evaluation,” arXiv preprint arXiv:2308.15363, 2023.

S. H. Khandkar, “Open coding,” University of Calgary, vol. 23, no. 2009, 2009.

unknown, “MRSQLGen,” unknown. [Online]. Available: https://github.com/MRSQLGen/MRSQLGen

F. My, L. Shi, S. Wang, Z. Yu, B. Zhang, C. Wang, S. Liu, and Q. Wang, “Clarifygpt: Empowering llm-based code
generation with intention clarification,” arXiv preprint arXiv:2310.10996, 2023.

E. J. Smith, “Sqlglot: An open source python sql parser, transpiler, and engine,” https://sqlglot.com/sglglot.html, 2021,
accessed: 2025-08-06.

E. Al “spacy: Industrial-strength natural language processing in python,” https://spacy.io/, 2015, accessed: 2025-08-06.
MRSQLGen Authors, “Detailed hkb construction and mr rules usage for mrsglgen,” https://github.com/MRSQLGen/
FSE26-Rebuttal-Material/blob/main/Details%200f%20HKB %20Construction%20and%20MR%20Rules%20Usage.md, 2026,
supplementary material.

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://openai.com/blog/chatgpt
https://github.com/MRSQLGen/MRSQLGen
https://sqlglot.com/sqlglot.html
https://spacy.io/
https://github.com/MRSQLGen/FSE26-Rebuttal-Material/blob/main/Details%20of%20HKB%20Construction%20and%20MR%20Rules%20Usage.md
https://github.com/MRSQLGen/FSE26-Rebuttal-Material/blob/main/Details%20of%20HKB%20Construction%20and%20MR%20Rules%20Usage.md

Validating LLM-Generated SQL Queries through Metamorphic Prompting FSE019:23

[53]

[54]

[55]
[56

—

[57]

[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]

[67]

[68]
[69]
[70]

(71

—

[72]
[73]
[74]
[75]

[76]

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray et al.,
“Training language models to follow instructions with human feedback,” Advances in neural information processing
systems, vol. 35, pp. 27 730-27 744, 2022.

B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, R. Sauvestre, T. Remez et al., “Code llama:
Open foundation models for code,” arXiv preprint arXiv:2308.12950, 2023.

“Qwen2.5-coder-14b,” 2024. [Online]. Available: https://huggingface.co/Qwen/Qwen2.5-Coder-14B

R. Wang, J. Guo, C. Gao, G. Fan, C. Y. Chong, and X. Xia, “Can llms replace human evaluators? an empirical study
of llm-as-a-judge in software engineering,” Proceedings of the ACM on Software Engineering, vol. 2, no. ISSTA, pp.
1955-1977, 2025.

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H. Zhang, and I. Stoica, “Efficient memory
management for large language model serving with pagedattention,” in Proceedings of the 29th Symposium on Operating
Systems Principles, 2023, pp. 611-626.

MRSQLGen Authors, “Failure case analysis for mrsqlgen,” https://github.com/MRSQLGen/FSE26-Rebuttal-Material/
blob/main/Failure%20Cases%20Analysis.md, 2026, supplementary material.

M. Pourreza and D. Rafiei, “Din-sql: Decomposed in-context learning of text-to-sql with self-correction,” Advances in
Neural Information Processing Systems, vol. 36, pp. 36 339-36 348, 2023.

Y. Xie, X. Jin, T. Xie, M. Lin, L. Chen, C. Yu, L. Cheng, C. Zhuo, B. Hu, and Z. Li, “Decomposition for enhancing
attention: Improving llm-based text-to-sql through workflow paradigm,” arXiv preprint arXiv:2402.10671, 2024.

B. Wang, C. Ren, J. Yang, X. Liang, J. Bai, L. Chai, Z. Yan, Q.-W. Zhang, D. Yin, X. Sun et al., “Mac-sql: A multi-agent
collaborative framework for text-to-sql,” arXiv preprint arXiv:2312.11242, 2023.

S. Talaei, M. Pourreza, Y.-C. Chang, A. Mirhoseini, and A. Saberi, “Chess: Contextual harnessing for efficient sql
synthesis,” arXiv preprint arXiv:2405.16755, 2024.

R. Sun, S. O. Arik, A. Muzio, L. Miculicich, S. Gundabathula, P. Yin, H. Dai, H. Nakhost, R. Sinha, Z. Wang et al.,
“Sql-palm: Improved large language model adaptation for text-to-sql (extended),” arXiv preprint arXiv:2306.00739, 2023.
W. Hwang, J. Yim, S. Park, and M. Seo, “A comprehensive exploration on wikisql with table-aware word contextualiza-
tion,” arXiv preprint arXiv:1902.01069, 2019.

Z.Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and P. Fung, “Survey of hallucination in
natural language generation,” ACM computing surveys, vol. 55, no. 12, pp. 1-38, 2023.

F. Liu, Y. Liu, L. Shi, H. Huang, R. Wang, Z. Yang, L. Zhang, Z. Li, and Y. Ma, “Exploring and evaluating hallucinations
in llm-powered code generation,” arXiv preprint arXiv:2404.00971, 2024.

Z.Zhang, C. Wang, Y. Wang, E. Shi, Y. Ma, W. Zhong, J. Chen, M. Mao, and Z. Zheng, “Llm hallucinations in practical
code generation: Phenomena, mechanism, and mitigation,” Proceedings of the ACM on Software Engineering, vol. 2, no.
ISSTA, pp. 481-503, 2025.

D. D. Johnson, D. Tarlow, D. Duvenaud, and C. J. Maddison, “Experts don’t cheat: learning what you don’t know by
predicting pairs,” arXiv preprint arXiv:2402.08733, 2024.

T. Xia, B. Yu, Y. Wu, Y. Chang, and C. Zhou, “Language models can evaluate themselves via probability discrepancy,”
arXiv preprint arXiv:2405.10516, 2024.

S. Lin, J. Hilton, and O. Evans, “Teaching models to express their uncertainty in words,” arXiv preprint arXiv:2205.14334,
2022.

Y. Abbasi Yadkori, I. Kuzborskij, A. Gyérgy, and C. Szepesvari, “To believe or not to believe your llm: Iterative prompting
for estimating epistemic uncertainty,” Advances in Neural Information Processing Systems, vol. 37, pp. 58 077-58 117,
2024.

L. Kuhn, Y. Gal, and S. Farquhar, “Semantic uncertainty: Linguistic invariances for uncertainty estimation in natural
language generation,” arXiv preprint arXiv:2302.09664, 2023.

Y. Wang, Z. Yu, Z. Zeng, L. Yang, C. Wang, H. Chen, C. Jiang, R. Xie, J. Wang, X. Xie et al., “Pandalm: An automatic
evaluation benchmark for llm instruction tuning optimization,” arXiv preprint arXiv:2306.05087, 2023.

T. Wang, P. Yu, X. E. Tan, S. O’Brien, R. Pasunuru, J. Dwivedi-Yu, O. Golovneva, L. Zettlemoyer, M. Fazel-Zarandi, and
A. Celikyilmaz, “Shepherd: A critic for language model generation,” arXiv preprint arXiv:2308.04592, 2023.

J. Wang, Y. Liang, F. Meng, Z. Sun, H. Shi, Z. Li, J. Xu, J. Qu, and J. Zhou, “Is chatgpt a good nlg evaluator? a preliminary
study,” arXiv preprint arXiv:2303.04048, 2023.

T. Kocmi and C. Federmann, “Large language models are state-of-the-art evaluators of translation quality,” arXiv
preprint arXiv:2302.14520, 2023.

Received 2025-09-10; accepted 2025-12-22

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE019. Publication date: July 2026.

https://huggingface.co/Qwen/Qwen2.5-Coder-14B
https://github.com/MRSQLGen/FSE26-Rebuttal-Material/blob/main/Failure%20Cases%20Analysis.md
https://github.com/MRSQLGen/FSE26-Rebuttal-Material/blob/main/Failure%20Cases%20Analysis.md

	Abstract
	1 Introduction
	2 Background and Motivation
	3 System Overview
	4 Hallucination Analysis in NL2SQL System
	4.1 Empirical Setup
	4.2 Hallucination Taxonomy
	4.3 Root Cause Analysis and Observations

	5 Prompt Paraphrasing
	5.1 Hallucination Knowledge Base Builder
	5.2 Potential Hallucination Type Retrieval
	5.3 MR Rules Construction

	6 Cross-Validation
	7 Evaluation
	7.1 Experimental Setup
	7.2 RQ1: Effectiveness and Comparison with Baselines
	7.3 RQ2: Ablation Study

	8 Discussion
	8.1 System Overhead, Complexity and Practical Deployment
	8.2 Failure Case Analysis
	8.3 Threats to Validity

	9 Related Work
	10 Conclusion
	References

