
SQLess: Dialect-Agnostic SQLQuery Simplification
Li Lin

Xiamen Key Laboratory of Intelligent
Storage and Computing, School of
Informatics, Xiamen University

Xiamen, Fujian, China
linli1210@stu.xmu.edu.cn

Zongyin Hao
Xiamen Key Laboratory of Intelligent
Storage and Computing, School of
Informatics, Xiamen University

Xiamen, Fujian, China
haozongyin@stu.xmu.edu.cn

Chengpeng Wang
The Hong Kong University of Science

and Technology
Hong Kong, China
cwangch@cse.ust.hk

Zhuangda Wang
Xiamen Key Laboratory of Intelligent
Storage and Computing, School of
Informatics, Xiamen University

Xiamen, Fujian, China
wurongxin@xmu.edu.cn

Rongxin Wu
Xiamen Key Laboratory of Intelligent
Storage and Computing, School of
Informatics, Xiamen University

Xiamen, Fujian, China
wangzhuangda@stu.xmu.edu.cn

Gang Fan
Ant Group

Shenzhen, Guangdong, China
fangang@antgroup.com

Abstract

Database Management Systems (DBMSs) are fundamental to nu-
merous enterprise applications. Due to the significance of DBMSs,
various testing techniques have been proposed to detect DBMS bugs.
However, to trigger deep bugs, most of the existing techniques fo-
cus on generating lengthy and complex queries which burdens
developers with the difficult of debugging. Therefore, SQL query
simplification, which aims to reduce lengthy SQL queries without
compromising their ability to detect bugs, is highly demanded.

To bridge this gap, we introduce SQLess, an innovative approach
that employs a dialect-agnostic method for efficient and semanti-
cally correct SQL query simplification tailored for various DBMSs.
Unlike previous works that have to depend on DBMS-specific gram-
mar, SQLess utilizes an adaptive parser, which leverages error re-
covery and grammar extension to support DBMS dialects. Moreover,
SQLess performs a semantics-sensitive SQL query trimming, which
leverages alias and dependency analysis to simplify SQL queries
with preserving bug-triggering capability.

We evaluate SQLess using two datasets from the state-of-the-
art database bug detection studies, encompassing six widely-used
DBMSs and over 32,000 complex SQL queries. The results demon-
strate SQLess’s superior performance: it achieves an average sim-
plification rate of 72.45% in the PINOLO Dataset, which significantly
outperforms the state-of-the-art approaches by 84.91%.

CCS Concepts

• Software and its engineering→ Software maintenance tools.

Keywords

SQL Query Simplification, Bug Detection, Program Trimming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680317

ACM Reference Format:

Li Lin, Zongyin Hao, Chengpeng Wang, Zhuangda Wang, Rongxin Wu,
and Gang Fan. 2024. SQLess: Dialect-Agnostic SQL Query Simplification. In
Proceedings of the 33rd ACM SIGSOFT International Symposium on Software

Testing andAnalysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria.ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3650212.3680317

1 Introduction

Database Management Systems (DBMSs) are widely utilized for
data storage in various software applications [4]. With hundreds
of DBMSs developed, each featuring distinct characteristics and
functionalities [46], the complexity and large-scale nature of these
systems often lead to the presence of bugs.

In database bug detection, methodologies mainly focus on iden-
tifying logical and crash errors [7]. The process [6] generates SQL
queries for DBMS execution, comparing results with test oracles, to
identify bugs when outcomes deviate from expectations. For queries
that do not meet expectations, bug reports will be submitted to de-
velopers for validation and fixes [18, 25, 41]. However, these queries
are usually lengthy because complex and valid queries are instru-
mental in finding deep bugs in DBMSs [6]. The lengthy query poses
significant challenges for developers in pinpointing the root cause
of the issue. Figure 1 gives a real-world example of bug report in
TiDB. This bug was quickly confirmed by the developer within
one day, but it had been lasted for more than two months without
any fix due to the lengthy test case. Until a simplified SQL query
was provided, this bug then was quickly fixed within two days.
This example indicates that SQL query simplification is critical for
developers to diagnose the bugs in DBMSs.

While many approaches concentrate on bug detection in DBMSs,
most do not adequately consider the importance of the SQL query
simplification. Existing studies [7, 11, 29, 31] on database bug detec-
tion merely integrate SQL query simplification into their workflows
in a simplistic manner. They employ the principles of Delta debug-
ging [50] to minimize SQL queries on structured inputs such as
Abstract Syntax Tree (AST). However, a common oversight in these
studies is the neglect of interdependencies among different struc-
tural elements. Such dependency-insensive deletion approach with-
out semantic checks can render the simplified SQL query non-
executable. For instance, in a query like "SELECT c1, c2 from t

https://doi.org/10.1145/3650212.3680317
https://doi.org/10.1145/3650212.3680317

ISSTA ’24, September 16–20, 2024, Vienna, Austria Li Lin, Zongyin Hao, Chengpeng Wang, Zhuangda Wang, Rongxin Wu, and Gang Fan

Table 1: Comparison of SQL query simplification tools

Simplification Strategy Correctness Guarantee Extensibility Bug type

Tool Expression Clause Subquery Column Syntactic Semantic Adaption to Crash Logical

Simplification Simplification Simplification Simplification Correctness Correctness other DBMSs Bugs Bugs

SQLancer [29] ✓ ✓ × × × × × ✓ ✓
PINOLO [7] ✓ ✓ × × × × × × ✓
RAGS [31] ✓ ✓ × × × × × ✓ ×
APOLLO [11] ✓ ✓ ✓ ✓ ✓ × × ✓ ×

Issue Report : #40015
User : qaqcatz
Reported Date : Dec 18, 2022
Description :
Bug Report: Logical bug. Value changed after relaxing ON condition [v5.0.2, v6.4.0]
Minimal reproduce step (Required):
drop table if exists t;
CREATE TABLE t (c1 FLOAT UNSIGNED);
INSERT INTO t VALUES (47),(28.1237);
SELECT (DATE_ADD(BIN(c1), INTERVAL 1 DAY_HOUR)) AS f1 FROM (SELECT 1
FROM t) AS t1 JOIN (SELECT c1 FROM t) AS t2 ON 1; -- sql1
SELECT (DATE_ADD(BIN(c1), INTERVAL 1 DAY_HOUR)) AS f1 FROM (SELECT 1
FROM t) AS t1 JOIN (SELECT c1 FROM t) AS t2 ON (0 AND c1 != 1) IS FALSE; -- sql2

SeaRise commented on Feb 28
SeaRise: “We need minor case.
SELECT DATE_ADD(c1, INTERVAL 1 DAY_HOUR) from test.test; --sql1 ”
Fix error handling of DateAddString vectorized function after simplifying the sql

Figure 1: SQL query simplification in bug report

where c2 > 30", existing tools, not analyzing the interdependencies
among elements, might delete the column c2, leading to the condi-
tion "c2 > 30" in theWHERE clause becoming syntactically incorrect.
Not surprisingly, such coarse-grained simplification is prone to gen-
erate invalidate SQLs. Moreover, existing studies mostly depend on
the specific grammar of the targeted DBMSs, thus leading to gen-
eralizability issues. Migrating the tool to another DBMS requires
much manual effort. For example, some prior study [6] showed that,
to support most of MariaDB’s grammar, SQUIRREL would need to
add more than nine thousands lines of code [51].

To overcome the above limitations, we propose SQLess, an ap-
proach designed for SQL query simplification that ensures semantic
correctness, while also possessing adaptability to various DBMSs
rather than relying on a special grammar. To achieve effective sim-
plification with semantic correctness, it is crucial to preserve the
dependency relationships among syntactic elements, ensuring that
subsequent clauses refer back to elements defined earlier while
upholding the integrity of both syntax and semantics. In the afore-
mentioned SELECT query, SQLesswill remove the c2 column along
with WHERE clause that depends on it, thereby ensuring semantic
correctness. We have also observed that the reason existing tools
support only specific DBMSs is due to their reliance on parsers
tailored for a given DBMS. This specialization results in failure
when encountering different database dialects, as the specialized
parsers are unable to successfully parse these variations, thereby
preventing further simplification. Our idea to resolve this problem
is to leverage a standard SQL parser which covers the common
core grammar of all DBMSs, together with error recovery mecha-
nism [1] in syntax analysis, to distinguish the dialect parts. Then we
expand the grammar by creating parsing rules to adapt the dialects.
Once successful parsing is achieved, we can then reuse the existing
simplification strategies.

At a high level, our approach is a dialect-agnostic approach,
which consists of two main phases. Firstly, SQLess implements an

adaptive SQL parser, building upon the foundation of ANTLR [36].
It applies error recovery mechanism [1] for grammar extension
and adaptation, effectively accommodating different database di-
alects. Specifically, for SQL queries that fail to parse successfully
due to dialect-specific variations, we establish a new rule at the
node where parsing failed, taking into account the unique dialect.
We then regenerate a new parser accordingly to accommodate
these dialect-specific nuances. Second, we developed a range of
simplification strategies based on the adaptive parser. To maintain
semantic correctness, semantic analysis are performed before sim-
plifying, forming a def-use dependency graph. This graph assists in
ensuring that elements to be deleted are not referenced elsewhere.
Furthermore, we employ an oracle-driven simplification verifica-
tion strategy, where results are checked against different oracles. If
the simplified SQL queries continue to yield erroneous results, the
simplification is deemed effective.

To evaluate the effectiveness of SQLess, we constructed two
datasets of bugs which have been found by the state-of-the-art
DBMS bug detection tools: PINOLO [7] and SQLRight [13]. These
datasets encompass a wide range of DBMSs, including MySQL [19],
MariaDB [15], OceanBase [20], TiDB [43], PostgreSQL [26], and
SQLite [32], totaling 32,951 complex SQL queries known to trigger
bugs. Our evaluation confirms that SQLess significantly surpasses
existing SQL query simplification methods, achieving a 72.45%
simplification rate in the PINOLO Dataset, outperforming state-of-
the-art by 84.91%. In summary, our contributions are as follows:
• We propose an adaptive syntax and semantics-sensitive simplifi-
cation approach to address the challenges of SQL query simplifi-
cation.
• We implement SQLess, a simplification tool that can simplify
complex queries in the real world.
• We evaluate SQLess on six widely-used DBMSs, and the eval-
uation results demonstrate the effectiveness of SQLess in SQL
query simplification.

We have released the source code of SQLess in the github reposi-
tory [38] to help developers for SQL query simplification.

2 Motivation

In this section, we introduce the importance of SQL query sim-
plification in the DBMS bug detection process and then illustrate
the existing limitations of the techniques concerning SQL query
simplification. Finally, we present the technical challenges and the
key idea.

2.1 Importance of SQL Query Simplification

In the realm of database bug detection, existing techniques pre-
dominantly fall into two distinct categories: identifying logical and
crash bugs [7]. Regardless of the bug types, the basic workflow for
detecting bugs in a DBMS is the same. Firstly, the SQL mutators

SQLess: Dialect-Agnostic SQLQuery Simplification ISSTA ’24, September 16–20, 2024, Vienna, Austria

SELECT
t1."c1" AS "f1",
, t2."c3"::INT AS "f2"

FROM "table_1" AS "t1"
JOIN "table_2" AS "t2" ON t1."c5" = t2."c5"
GROUP BY "f1","f2"
HAVING SUM("f1"+"f2") > 20
FOR UPDATE SKIP LOCKED;

SELECT
t1."c1" AS "f1"
, (t2."c3")::INT AS "f2"

FROM "table_1" AS "t1"
JOIN "table_2" AS "t2" ON t1."c5" = t2."c5"
GROUP BY "f1","f2"
HAVING SUM("f1"+"f2") > 20
FOR UPDATE SKIP LOCKED;

MySQL Parser

SQLite Parser

PostgreSQL Parser

Adaptive Parser

Failed! Successful!

Rewrite Strategies
Build AST

SELECT t1."c1" AS "f1“ , (t2."c3")::INT AS "f2"
FROM "table_1" AS "t1"JOIN "table_2" AS "t2" ON t1."c5" = t2."c5"
GROUP BY "f1","f2"
HAVING SUM("f1" + "f2") > 20
FOR UPDATE SKIP LOCKED;

Figure 2: A motivation example

or generators consistently generate diverse SQL queries using dif-
ferent strategies to cover various functionalities of the DBMS as
comprehensively as possible. Then, these generated SQL queries are
subsequently transmitted to the DBMS, where the server executes
them and returns the results. These results are then scrutinized
against predefined oracles. Additionally, a crash can be seen as a
special kind of test oracle. If the queries do not perform as expected,
it can indicate a bug in the database [45]. For queries that do not
meet expectations, bug reports will be submitted to developers for
validation and fixes. However, our statistical analysis confirms that
those generated SQL queries are typically lengthy; the original
SQL queries generated by the state-of-the-art bug detection tool
PINOLO averaged more than 160 tokens in length, as detailed in
Section 5 and Table 2. It poses significant challenges for developers
in pinpointing the root cause of the issue. The SQL query simplifica-
tion module is used to simplify the triggering test cases to facilitate
database developers to locate and resolve bugs.

Figure 1 shows a real-world bug of TiDB detected by PINOLO [7].
Although the reporter manually simplified the complex SQL query,
the lengthy SQL query still made developers hard to debug. Two
months passed, and the bug remained unfixed until this SQL query
was simplified. Sincemanual simplification is a time-consuming and
challenging task, especially for users who are non-experts in the
domain of databases [28], there is an urgent need for an automated
tool that can assist developers in simplifying SQL queries.

2.2 Challenges of SQL Query Simplification

Although SQL query simplification plays a crucial role in the detec-
tion of DBMS bugs, to date, there has yet to be a systematic study
dedicated exclusively to the exploration of SQL query simplification.
Existing work on database bug detection integrates SQL query sim-
plification into their workflows, employing methods for SQL query
simplification as outlined in Table 1. Table 1 provides a compara-
tive overview of various SQL query simplification tools, detailing
their strategies, correctness guarantee, DBMS extensibility, and so
on. Expression simplification and clause simplification [7, 29, 31]
are relatively easy to implement, but the scope for simplification is
limited. The elimination of operations within subqueries and remov-
ing unused columns [11] broaden the extent of the simplification,

which enhances the simplification effectiveness. However, existing
tools have yet to effectively address these two main challenges:
adaptability to various DBMSs and preserving semantic correctness
and bug-triggering capability after simplification.

The first challenge involves achieving adaptability to various
DBMSs, as existing efforts predominantly depend on the specific
grammar of target DBMSs to simplify SQL queries. SQL dialects [47]
represent subtle variations of the SQL standard, with each being
unique to specific database systems and featuring distinct grammat-
ical nuances. These variations manifest differences in SQL syntax
and support for data types, implementations of functions and stored
procedures, and proprietary features. For example, the ::INT type
cast and SKIP LOCKED clause are specific to PostgreSQL in Fig-
ure 2. SKIP LOCKED allows transactions to skip locks held by others,
unavailable in DBMSs like MySQL. Similarly, ::INT differs from
standard SQL cast syntax, affecting parsing and simplification if
ignored. When introducing a new DBMS or updating to a version
with distinct SQL dialects, existing approaches will fail. Migrating a
tool to a new DBMS is time-consuming and labor-intensive [6]. Pre-
vious approaches would first apply a specific parser such as MySQL
Parser to parse the SQL query, which will lead to parsing failures
when encountering the unique dialect of PostgreSQL. If parsing
fails, it would require significant effort to reimplement the simplifi-
cation strategies on a new parser—a process both time-consuming
and labor-intensive.

Another significant challenge is ensuring semantic correctness
after simplification. Semantically incorrect SQL queries will di-
rectly lead to execution errors and miss opportunities for further
simplification. The key to preserve the semantic correctness is to
maintain the dependency relationships between syntactic elements.
For example, if they remove the alias𝐶 from a query𝑄 but another
element 𝐸 uses 𝐶 , the DBMS will throw a semantic error. Deletions
that overlook semantic correctness can cause execution failures. For
instance, previous approaches might indiscriminately delete a col-
umn like "f2" without accounting for its dependencies, as illustrated
by the failure in Figure 2.

2.3 Key Idea

Our idea to resolve the first challenge is to construct an adaptive
parser to accommodate various DBMS dialects. To achieve this, we
first leverage a standard parser based on ANSI SQL standards [2]
together with error recovery mechanism [1] to recognize the di-
alect parts of a given SQL query. Then, we create a new parser by
performing grammatical extensions to adapt the dialect-specific
elements. This enables the application of various simplification
strategies across different DBMSs. Take Figure 2 as an example. We
firstly employ the standard SQL grammar to parse this SQL query.
Unfortunately, with the standard SQL grammar, our initial parsing
attempt fails when it encounters dialect-specific elements. To miti-
gate this issue, we leverage error recovery mechanism which allows
the parser to recognize the interruption and bypass it temporarily.
Figure 2 demonstrates an example where the parser, utilizing error
recovery, skips over the dialect-affected part of the query, marked
in grey within the SELECTELEMENT “f2”, and continues parsing
the remainder. Subsequently, to handle the unrecognized parts, we
incorporate a new rule into the parser’s grammar. The rule, defined
as “fullColumn: uid dottedId COLON COLON dataType”, enables

ISSTA ’24, September 16–20, 2024, Vienna, Austria Li Lin, Zongyin Hao, Chengpeng Wang, Zhuangda Wang, Rongxin Wu, and Gang Fan

the parser to interpret the PostgreSQL-specific type casting ::INT
which is an extension to the standard grammar that allows the
parser to recognize and process type casts by defining a “dataType”
non-terminal. We will further elaborate this example in Section 3.2.
After that, a new parser is generated by the extended grammar and
successfully parse this SQL query into AST.

To address the second challenge, i.e., ensuring semantic correct-
ness after simplification, our approach identifies the dependen-
cies between various elements within a query through rigorous
semantic analysis. Initially, we analyze alias relationships and de-
pendencies. A def-use graph is then constructed, serving as the
foundation for applying diverse simplification strategies. This ap-
proach involves careful deletion of def elements along with their
dependent uses, ensuring semantic correctness. Furthermore, we
identify and remove redundant def elements, maximizing simpli-
fication efficiency. Take Figure 2 as an example. When deleting a
column “f2”, previous approaches might recklessly delete it without
considering its dependencies, while our approach ensures that both
the column and its dependent elements are simultaneously deleted.
Specifically, in this case, the uses in GROUPBY clause and HAVING
clause containing “f2” are deleted, and the unused definition “t2” is
also deleted.

It should be noted that the design of adaptive parser is critical
for maintaining the integrity and correctness of semantic analysis
during the simplification process. If we were to simply disregard
dialect-specific segments, such as “(t2."c3")::INT” in Figure 2, the
resulting AST would be incomplete. Such incompleteness impairs
semantic analysis, which in turn leads to the missing chances for
simplification, particularly when it causes misunderstandings or
oversights regarding key components such as aliases for columns
and tables. For example, in the scenario depicted in Figure 2, if the
parser overlooks the dialect-specific casting of “t2."c3"”, the refer-
ence target of the alias “f2” becomes unclear since its definition
relies on this dialect-specific casting. To ensure semantic correct-
ness, one of possible methods is to preserve the column "f2" and
its dependencies, leading to the missing chances of simplification.
Furthermore, when removing JOIN CLAUSE, semantic analysis
is performed on table “t2”, which is implicated by the dialect sec-
tion “t2."c3"::INT”, leading to incomplete semantic analysis and thus
posing a risk to semantic correctness. Different from the aforemen-
tioned methods, our adaptive parser does not simply bypass these
challenging elements but integrates new rules to effectively parse
and include these dialect-specific subtrees within the AST. The rule
generated by our tool is not a mere placeholder but an integral
part of the grammar, enabling the parser to accurately interpret the
query segment that includes the dialect. These rules ensure that
every part of the query, including dialect-specific syntax, is given a
definite structure andmeaning, thereby maintaining the integrity of
the semantic analysis and the correctness of the subsequent query
simplification process.

3 Approach

The goal of this paper is to design a highly adaptable and semantics-
sensitive SQL query simplification approach, thereby maximizing
the simplification capabilities. This section presents the design of
SQLess to show how it simplifies the query statement and how it
adapts to different DBMSs.

3.1 Overview

Figure 3 shows an overview of our approach SQLess, featuring two
core components: adaptive parser and query trimmer. Adaptive
parsing generates SQL parsers for various DBMS dialects, which
then parse SQL queries to build an AST for semantic analysis. This
results in a def-use graph, preserving semantic correctness. Subse-
quent simplification strategies prune the AST, and an oracle checker
evaluates the simplified queries for bug detection, iteratively pro-
ducing a set of simplified SQL queries.

The critical components of SQLess are the auto-generation of a
parser capable of adapting to various DBMSs and a query trimmer
effective in the simplification of SQL queries. To show more techni-
cal details, we first introduce an adaptive syntax parser generator
capable of producing parsers that accommodate a variety of DBMSs’
dialects in Section 3.2, and then we demonstrate how to utilize this
parser for SQL query simplification in Section 3.3.

3.2 Adaptive Parsing

In contrast to simplification tools like APOLLO [11], which employs
sqlparse [34], and PINOLO [7], choosing PINGCAP PARSER [24]
each relies on a specific parser for SQL efficiency as the foundational
premise for their simplification process. Adaptive parser develops
specialized parsers for different DBMS dialects . To implement the
adaptive parser, we build on theANTLR [36] foundation. The dialect
builder creates a tailored grammar file (.g4), which ANTLR [36]
uses to produce a new parser. This ensures the parser can interpret
SQL queries across different DBMS dialects, providing a robust
solution for SQL query simplification.

3.2.1 Preliminaries. ANTLR constructs parsers from .g4 gram-
mar files and is crucial in SQLess for parsing and simplifying SQL
queries. Key ANTLR terminologies in our work include:

• Terminal Symbols (Tokens): The smallest elements of the
grammar, such as keywords and punctuation. As shown in Fig-
ure 4, tokens are represented by bold text in the Abstract Syntax
Tree (AST) and appear as leaf nodes.
• Nonterminal Symbols: Nonterminal symbols are the non-leaf
nodes in a parse tree, like “selectStatement” and “querySpecifi-
cation” in Figure 4.
• Production Rules: The combinations of tokens and nonter-
minal symbols that define the structure of the language. For
example, the “fullColumn” rule, as shown in Figure 4, illustrates
a specific production rule where a “uid” is optionally followed
by a “dottedId”, showcasing how elements in the syntax can be
structured together.
• Error Recovery Mechanism: To handle dialect issue, we lever-
age ANTLR’s error recovery mechanism to achieve adaptive
parsing. For example, when the parser encounters an invalid
token sequence, such as an unexpected format within the “full-
Column” rule as illustrated in Figure 4, error recoverymechanism
enables the parser to skip over the problematic section and con-
tinue processing the subsequent tokens. This feature ensures the
parser’s resilience and flexibility when dealing with various SQL
dialects that may deviate from the standard grammar.

SQLess: Dialect-Agnostic SQLQuery Simplification ISSTA ’24, September 16–20, 2024, Vienna, Austria

Initial
Queries

Dialect Builder ANTLR

G4 file

Oracle
Checker

Simplified
Queries

Semantic
Analysis

Elem alias

c1 f1

e1 f3

Simplification
Strategies

New Parser

AST

Figure 3: Workflow of SQLess

root

sqlStatements SKIP:skip LOCKED

selectStatement:simpleSelect

querySpecification lockClause

SELECT selectElements fromClause

SELECT t1."c1" AS "f1“ , (t2."c3")::INT AS "f2"
FROM "table_1" AS "t1"JOIN "table_2" AS "t2" ON t1."c5" = t2."c5"
GROUP BY "f1","f2"
HAVING SUM("f1" + "f2") > 20
FOR UPDATE SKIP LOCKED;

groupClause havingClause

selectElement

MySqlParser.g4
parser grammar MySqlParser;
options { tokenVocab=MySqlLexer; }
root
 : sqlStatements? (MINUS MINUS)? EOF
 | sqlStatements SKIP LOCKED
 ;
… …
fullColumn
 : uid dottedId?
 | uid dottedId COLON COLON INT
 ;

COMMA; selectElement

fullColumn

uid

Id:t2

dottedId .c3 COLON: COLON: INT

AS uid

Id:f2

Add two rules based
on the failed node

Figure 4: An example of dialect builder

3.2.2 Dialect Builder. Dialect builder is a crucial step in adaptive
parser. It generates a grammar file (.g4 file) adaptable to various di-
alects, which is then used by the parser generator ANTLR to create
a new parser. The workflow of dialect builder begins with a founda-
tional grammar file (.g4 file) fromwhichANTLR generates an initial
parser, denoted as Standard Parser, fundamentally based on ANSI
SQL standards [2]. This parser attempts to process an initial SQL
query. If the query contains DBMS-specific dialects, the parsing
will fail. At this point, the dialect builder utilizes error recovery
mechanism [1], which is the strategy that allow the parser to skip
the point of error and continue parsing. This parser generated by
ANTLR that can automatically emit rich error messages upon syn-
tax error and successfully resynchronize much of the time [22]. This
strategy facilitate the creation of new rules at the location of failure.
Specifically, dialect builder identifies the top of the stack at the point
of parsing failure and introduces a new production directly under
the failed stack’s top rule. It is important to note that our approach
involves not only incorporating dialect-specific elements but also
introducing new terminal and non-terminal symbols. Remarkably,
even if the rule itself fails, some of its subrules may successfully
parse parts of the query. Therefore, when adding new productions

to the grammar, we may also introduce new non-terminal symbols
to encompass these successful sub-components.

Figure 4 exemplifies this process, illustrating how new rules
are integrated into the grammar after a parsing failure occurs with
dialect-specific SQL constructs. The red dashed boxes emphasize the
nodes where the parsing rules failed. These nodes imply the need for
an enhancement of the grammar. To rectify this, the dialect builder
introduces new production rules into the grammar file, signified by
the “|” symbol and outlined with dashed lines, which are inserted
at the point where the original parsing halted. This augmentation
involves both terminal symbols, such as "COLON" and "INT" used
in the type cast, and non-terminal symbols that represent structured
grammar rules, such as “fullColumn” and “uid”, which incorporates
semantic elements like column names. By embedding these new
rules directly beneath the point of failure, the adaptive parser can
now successfully parse these previously unrecognized elements.

In summary, adaptive parser’s methodical approach to extend-
ing the Standard Parser with dialect-specific adaptations ensures
that the semantic essence of the SQL queries is preserved, thereby
enhancing the efficacy of the SQL query simplification task.

3.3 Semantics-Sensitive Query Trimming

After generating a new parser capable of recognizing various di-
alects, query trimmer then proceeds to simplify SQL queries. SQL
query simplification involves iteratively removing as many query
elements as possible while ensuring that the simplified query can
still trigger a bug. To ensure syntactic correctness, all our simplifica-
tion operations are conducted on AST. Semantic analysis, including
alias analysis and dependency analysis is performed before any
node deletions to maintain semantic correctness. We also use an
oracle-driven approach to ensure that the simplified queries still
retain the same bug-detection capability.

3.3.1 Semantic Analysis. An effective query trimmer maintains
semantic correctness by utilizing a def-use graph to accurately
depict dependencies in SQL queries.

Figure 5 illustrates the dependency relationships among various
elements within a SELECT statement. Firstly, we establish a tabular
mapping between aliases and their actual references. A def-use
graph has been constructed to represent the data dependencies. In
this graph, circular nodes denote the definition of aliases, whereas
square nodes indicate the use of aliases. We have identified two
distinct types of relationships:

(1) Definition Dependency: Represented by solid black lines,
this relationship indicates that the definition of one alias depends
on the definition of another. For instance, the definition of alias “f3”
relies on the definition of “f4” and “t3”. Ensuring the integrity of

ISSTA ’24, September 16–20, 2024, Vienna, Austria Li Lin, Zongyin Hao, Chengpeng Wang, Zhuangda Wang, Rongxin Wu, and Gang Fan

SELECT t1."c1" AS "f1" , (t2."c3")::INT AS "f2", (SELECT col AS "f4" FROM "table_3"
AS "t3") AS "f3"
FROM "table_1" AS "t1"JOIN "table_2" AS "t2" ON t1."c5" = t2."c5"
GROUP BY "f1","f2"
HAVING SUM("f1" + "f2") > 20
FOR UPDATE SKIP LOCKED;

Alias Value Type
f1 t1.c1 Column
f2 (t2."c3")::INT Column
f3 (SELECT col AS "f4" FROM "table_3" AS "t3") Subquery
f4 col Column
t1 table_1 Table
t2 table_2 Table
t3 table_3 Table

① Check definition dependency
before deleting f2

③ Remove unused
def after checking

(a) Alias Mapper

(c) Usage of def-use graph

SELECT t1."c1" AS "f1" , (t2."c3")::INT AS "f2", (SELECT col4 AS "f4" FROM "table_3"
AS "t3") AS "f3"
FROM "table_1" AS "t1"JOIN "table_2" AS "t2" ON t1."c5" = t2."c5"
GROUP BY "f1","f2"
HAVING SUM("f1" + "f2") > 20
FOR UPDATE SKIP LOCKED;

② Check usage dependency
and remove them

GROUP BY "f1","f2"

t1."c1" AS "f1" (t2."c3")::INT AS "f2"

"table_1" AS "t1"JOIN "table_2" AS "t2" ON t1."c5" = t2."c5"

f1 f2 t1 t2

① Delete f2

③ Remove unused def t2(b) Def-use Graph

② Remove f2’ dependencies

HAVING SUM("f1" + "f2") > 20

f3
f4

t3

Figure 5: An example of semantic analysis

the deletion process requires removing all instances of “f4” and “t3”
when deleting “f3”.

(2) Usage Dependency: Represented by dashed red lines, this
relationship shows the utilization of aliases within the query. For
example, the expression “"f1"+"f2"” employs the alias “f1” and “f2”.

Constructing a def-use graph is a cornerstone in maintaining
semantic correctness within SQL query processing. Alias analysis
is the first step. We identify and categorize the aliasing relationships
defined in grammar files, including table aliases, column aliases,
result-set aliases, function aliases, and expression aliases. Upon
detecting an aliasing relationship, we establish a mapping record to
trace the correspondence between the alias and its actual reference.
Moreover, our method is recursively structured. Throughout the
analysis, we unravel and identify nested alias relationships layer
by layer. For instance, as depicted in Figure 5, upon recognizing
the alias “f3”, we delve into the subsequent aliases “f4” and “t3”
associated with it. We draw two edges, one from “f3” to “f4” and the
other from “f3” to “t3”, to represent the dependency relationships
between these aliases.

After mapping out the aliases and their actual references, depen-
dency analysis necessitates pinpointing the utilization of these
aliases within the SQL query elements. For example, as illustrated
in Figure 5, the HAVING clause expression “HAVING SUM("f1" +
"f2") > 20” employs the aliases “f1” and “f2”. We record the instances
of alias usage and the precise location within the query to ensure

accurate deletions. Furthermore, we maintain a use counter for
each alias and then track how frequently each alias is employed
within the query. An alias with a use counter at zero indicates that
it is no longer in use, signifying potential for safe elimination from
the query without compromising its semantic correctness.

Figure 5(c) demonstrates the application of the def-use graph
in the simplification of a query. When attempting to remove the
column represented by the alias “f2”, we first examine the definition
dependencies. As the definition of “f2” does not rely on other aliases’
definitions, it can be safely deleted. To remove “f2”, we must also
eliminate the elements that use “f2”, so that it will not cause the
errors of missing definitions. Then, wewill update the def-use graph
to reflect these changes. Finally, we inspect the related unused
definitions. In this example, “t2” is not used anywhere else within
the query, which means it can be safely removed as well.

Overall, semantic analysis works on each part of a query. The
rules in grammar extensions can reuse non-terminals in the com-
mon core grammar, e.g., table name, column name, rename column,
etc. As long as these non-terminals relevant to alias analysis and
dependency analysis are successfully parsed, we can run semantic
analysis. Through semantic analysis, we can trace the dependen-
cies between elements in a query, allowing us to identify sections
that can be safely simplified without compromising the query’s
semantic correctness.

3.3.2 General Query Simplification Framework. The query trim-
mer framework is designed for the simplification of SQL queries
with the goal of simplifying the query without reducing its bug-
triggering capabilities. It takes four inputs: an initialized DBMS
for executing SQL queries, an original query that is known to trig-
ger a bug, an oracle checker that mutates SQL queries and checks
if the execution results meet the expected outcomes, and a new
parser generated from adaptive parser which is capable of parsing
SQL queries in different DBMS dialects. The algorithm eventually
returns a simplified SQL query.

Algorithm 1 outlines the simplification process. The approach
begins with the original query and applies a range of simplification
strategies. Each strategy is tested to reduce the query size while still
triggering the bug. This is accomplished by constructing a def-use
graph representation of the query’s AST, deleting nodes based on
the strategy, and then unparsing the modified AST back to SQL
query. The original and mutated queries are executed, and if the
mutated query continues to exhibit the bug, as determined by the
oracle checker, the simplified query is updated. This process iterates
until no further reductions are possible, resulting in the shortest
query version that still can trigger the target bug.

3.3.3 Simplification Strategies. Our query simplification frame-
work is equipped with five categories of simplification strategies:

Clause simplification involves reducing the query by simpli-
fying components such as WHERE clause and HAVING clause.
This may include removing redundant conditions or simplifying
complex clauses without altering the query’s meaning.

Column simplification aims to minimize the SQL query by
removing columns that do not affect the erroneous results. This
strategy simplifies the query by ensuring only relevant columns
are selected, which can improve performance and readability.

SQLess: Dialect-Agnostic SQLQuery Simplification ISSTA ’24, September 16–20, 2024, Vienna, Austria

Algorithm 1 Simplifying bug-triggering queries
Input: DBMS: initial DBMS

original_query: original query that can trigger bug
Oracle_Checker: test oracle in DBMS.
Parser_new: A parser generated by the adaptive parser

Output: simplified_query: minimal query triggering bug
simplified_query← original_query
// Apply simplification strategies
for strategy in strategies do

ASTtemp ← Parser_new(simplified_query)
DefUse_Graph← ConstructGraph(ASTtemp)
ASTdel ← DeleteNodeInAst(ASTtemp, strategy)
Slim_Query← Unparser(ASTdel)
Mutated_Query← Oracle_Checker.mutate(Slim_Query)
Res_ori← RunQuery(Slim_Query, DBMS)
Res_mut← RunQuery(Mutated_Query, DBMS)
if Oracle_Checker.check(Res_ori, Res_mut) is bug then

simplified_query← Slim_Query
end if

end for

return simplified_query

Subquery simplification refers to the process of minimizing or
eliminating subqueries. We apply various strategies such as clause
simplification or column simplification to subqueries or, where
possible, to remove them entirely. For instance, with the query
"SELECT c FROM t WHERE c IN (SELECT c FROM t GROUP BY
c HAVING COUNT(*) > 10);", we may simplify by eliminating the
nested GROUPBY and HAVING clauses in the subquery.

Expression simplification includes reducing the complexity of
arithmetic and logical expressions within the query. It may involve
applying algebraic simplifications or removing redundant expres-
sions that do not change the outcome. For instance, in expressions
like 𝑐1 ∧ 𝑐2, we may try to remove 𝑐1 or 𝑐2 to see if the result
remains unchanged.

Optimizer hints and other modifiers strategy aim to remove
or adjust hints and modifiers that guide the database’s query opti-
mizer. For instance, the query "SELECT /*+ index(emp ind_emp_sal)
*/ * FROM emp WHERE deptno = 200 AND sal > 300;" includes an
optimizer hint "/*+ index(emp ind_emp_sal) */". The simplification
process would remove such hints to prevent them from influencing
the execution plan in a way that might mask the presence of a bug.

4 Implementation

We have implemented our approach SQLess as a tool, comprising
6,783 lines of code. In what follows, we present more details about
our implementation to support the reproducibility of our approach.

Adaptive Parsing. Our adaptive parser is built upon the gram-
mar file MySqlParser.g4 [42], utilizing ANTLR version 4.12.0 [36]
for parsing. We select MySQL grammar as the base, because its
grammar encompassing the full spectrum of standard SQL syntax.
The adaptive parser is powered by ANTLR version 4.12.0, a versa-
tile tool renowned for its support of multiple target languages and
its assurance of consistency across different platforms, making it
invaluable for cross-platform development. The grammar frame-
work in the adaptive parser utilizes the default ANTLR 4 strategy,
ALL(*), combined with its default error recovery mechanism [37].

To clarify, while both adaptive parsing mentioned in the paper and
ANTLR’s ALL(*) parsing strategy share the same name, they differ
in their implementation and application. Lastly, the adaptive parser
in SQLess is implemented in Java, leveraging the advanced features
of ANTLR.

Semantics-Sensitive Query Trimming. In the query trimmer,
we perform alias analysis and dependency analysis based on the syn-
tactic rules defined in the ANTLR grammar file MySqlParser [42].
The analyses facilitate the construction of a def-use graph, which
is pivotal for understanding the relationships and dependencies
within SQL queries. Moreover, we have applied a suite of simpli-
fication strategies directly to the AST derived from MySqlParser.
These strategies are designed to prune the AST effectively, thereby
simplifying the complexity of the SQL queries while preserving
their semantic correctness.

5 Evaluation

In this section, we evaluate the efficacy of SQLess by applying it
to the simplification of real-world SQL queries. Our evaluation is
designed to answer the following research questions:

• RQ1: How does SQLess perform in simplifying real-world SQL
queries in terms of effectiveness and efficiency?
• RQ2: Can SQLess outperform state-of-the-art query simplifica-
tion tools in diverse scenarios?
• RQ3: How do the adaptive parsing and the semantic analysis in
SQLess benefit the SQL query simplification process?
• RQ4: Can SQLess provide useful information for DBMS devel-
opers to facilitate the diagnosis of real-world bugs with lengthy
SQL queries?

5.1 Experimental Setting

5.1.1 Dataset Preparation. We use two state-of-the-art DBMS test-
ing techniques, PINOLO [7] and SQLRight [13], to generate com-
plex, bug-inducing queries for our experiments.

• PINOLO constructs SQL queries with the approximation relation
to address the test-oracle problem, supporting testingMySQL [19],
MariaDB [15], Oceanbase [20], and TiDB [43].
• SQLRight guides validity-oriented mutations with coverage to
detect logical and crash bugs in DBMS systems. It has been exten-
sively tested on MySQL [19], PostgreSQL [26], and SQLite [32].

We test the latest version of each DBMS by running PINOLO and
SQLRight for 24 hours, eventually generating problematic SQL
queries that lead to unexpected results. Table 2 summarizes the
outcomes: AllN (number of problematic queries), AvgT (average
token length), MaxT (maximum token length), AvgC (average
number of clauses), and AvgA (average number of aliases). These
metrics gauge SQL query complexity. Both tools generate com-
plex queries, forming two datasets for evaluating SQLess, namely
PINOLO Dataset and SQLRight Dataset, respectively.

5.1.2 Metrics. We use two metrics to assess SQLess: simplification
ratio and simplification time. The definitions are as follows.

• Simplification Ratio (SimRatio): This metric quantifies the
effectiveness of SQLess in simplifying the complexity of SQL

ISSTA ’24, September 16–20, 2024, Vienna, Austria Li Lin, Zongyin Hao, Chengpeng Wang, Zhuangda Wang, Rongxin Wu, and Gang Fan

Table 2: Statistics of bugs found by PINOLO and SQLRight

PINOLO Dataset SQLRight Dataset

DBMS AllN AvgT MaxT AvgC AvgA AllN AvgT MaxT AvgC AvgA

MySQL 8934 185.2 538 17.95 21.03 2 15 17 2 0
MariaDB 18507 152.2 517 15.36 18.96 – – – – –
Oceanbase 1777 190.5 464 19.10 22.50 – – – – –
TiDB 3523 165.6 490 16.43 19.34 – – – – –
PostgreSQL – – – – – 35 42.9 128 4.08 2.00
SQLite – – – – – 143 48.7 153 4.03 4.27

Table 3: Benchmark results of SQL query simplification

Benchmark DBMS ALLN AvgT AvgSimRatio MaxSimRatio AvgTime (ms) MaxTime (ms)

PINOLO MySQL 8,934 185.2 70.00% 93.47% 595.0 1,387
Dataset MariaDB 18,507 152.2 76.27% 95.11% 1,041.0 4,920

OceanBase 1,777 190.5 50.90% 90.06% 394.0 879
TiDB 3,523 165.6 69.48% 93.16% 254.0 1,023
All 32,741 164.7 72.45% 95.11% 799.5 4,920

SQLRight MySQL 2 15.0 35.00% 45.00% 5.2 7
Dataset PostgreSQL 35 42.9 40.50% 87.70% 34.2 267

SQLite 143 48.7 37.10% 90.32% 46.1 403
All 180 47.3 37.74% 90.32% 43.3 403

queries which is defined as the percentage reduction in the num-
ber of tokens. It is computed as follows:

SimRatio(%) =
(
Original Token Count − Reduced Token Count

Original Token Count

)
× 100 (1)

• Simplification Time: This metric measures the temporal effi-
ciency of the simplification process from initiation to completion.
Shorter times are indicative of a more efficient simplification
algorithm, which is critical for real-time database bug detection
and maintenance tasks.

5.1.3 Baselines. We compare SQLess with two baselines. As illus-
trated in Table 1, existing tools primarily deploy two approaches:
• ClauseDelete : Tools such as SQLancer [29], RAGS [31], and
PINOLO [7] employ a strategy of randomly deleting clauses from
SQL queries. This approach is straightforward to implement and
is limited to the parts of the query.
• APOLLO: This tool [11] takes simplification further by allowing
subquery simplifications and column deletions, thereby expand-
ing the scope of the simplification strategy.
Note that the above tools all use different parsers and a variety

of error types. Since the query simplification strategies in these
baselines are not implemented as an isolated component, and we
have no way to run the original tools, to ensure a fair comparison,
we have implemented these two baselines on the ANTLRMySQL
grammar utilized by SQLess. We manually write test cases to verify
the correctness of the implementation.

Environment. We conduct the experiments on one server with
104-cores Intel(R) Xeon(R) Gold 6230R CPU @2.10GHz and 500 GB
memory. The server operates under the Ubuntu 18.04 OS, with the
5.4.0-135-generic version of the Linux kernel.

5.2 Effectiveness and Efficiency

We evaluate SQLess upon the two datasets, namely PINOLO Dataset

and SQLRight Dataset, which cover four and three DBMSs, respec-
tively. Table 3 shows the detailed statistics of query simplification

v SQL Query Simplification Comparision
WITH `MYWITH` AS ((SELECT (DATE_SUB(`f4`, INTERVAL 1 MONTH)) AS `f1`,(DATE_ADD
(REPEAT(`f5`, 2), INTERVAL 1 DAY_MINUTE)) AS `f2`,(`f4`|0.13687240936980968) AS `f3` F
ROM (SELECT `col_char(20)_undef_signed` AS `f4`,`col_double_undef_unsigned` AS `f7`,`co
l_float_key_signed` AS `f6` FROM `table_3_utf8_undef` IGNORE INDEX (`col_bigint_key_sig
ned`, `col_varchar(20)_key_signed`)) AS `t1` STRAIGHT_JOIN (SELECT (NULL) AS `f8`,(CR
C32(0)) AS `f5`,(!_UTF8MB4‘come’) AS `f9` FROM (SELECT `col_bigint_undef_unsigned`
AS `f10`,`col_decimal(40, 20)_undef_signed` AS `f11`,`col_decimal(40, 20)_undef_unsigned`
AS `f12` FROM `table_3_utf8_undef` FORCE INDEX (`col_float_key_unsigned`)) AS `t2` WH
ERE (NOT ((LAST_DAY(_UTF8MB4‘2000-09-05 03:27:14’)) NOT BETWEEN `f10` AND _
UTF8MB4‘2016-03-14’)) OR ((DATE_SUB(`f11`, INTERVAL 1 MICROSECOND)) IN (COT
(6),SECOND(_UTF8MB4‘03:40:24’),`f12`))) AS `t3` ON ((NOT (CAST((NULL) AS CHAR) L
IKE _UTF8MB4‘%0%’)) OR ((COLLATION(`f6`)) IN (1,`f5`,COERCIBILITY(`f4`))) OR (NOT
(ROW(COT(0.12073627913396147),LOG2(0.9688927019445049)^`f4`) IN (SELECT `col_dou
ble_key_signed`,`col_double_key_signed` FROM `table_7_utf8_undef`)))) IS TRUE) UNION A
LL (SELECT (-`f14`) AS `f1`, (BINARY 0.7339937007342865) AS `f2`,(DATE_ADD(PI(), INTE
RVAL 1 SECOND_MICROSECOND)) AS `f3` FROM (SELECT `col_double_undef_signed` AS
`f13`,`col_float_undef_unsigned` AS `f14`, `col_bigint_key_signed` AS `f15` FROM `table_3_ut
f8_undef` IGNORE INDEX (`col_float_key_signed`, `col_decimal(40, 20)_key_signed`)) AS `t
4` WHERE ((((6557202696029309858) IN (STRCMP(`f15`, `f14`),CHARSET(`f13`),`f13`)) IS T
RUE) OR ((`f14`) BETWEEN `f13` AND `f13`)) IS FALSE HAVING (((ROW(DEGREES(0.8825
865858138652),`f3`*!TO_BASE64(`f3`)*BINARY DAYOFYEAR(_UTF8MB4'2002-02-08')) NOT
IN (SELECT `col_varchar(20)_key_signed`,`col_bigint_undef_signed` FROM `table_3_utf8_un
def`)) IS TRUE) OR ((DATE_ADD(-0, INTERVAL 1 SECOND_MICROSECOND)) IS TRUE) O
R ((EXISTS (SELECT `col_float_undef_unsigned` FROM `table_3_utf8_undef` FORCE INDE
X (`col_decimal(40, 20)_key_signed`))) IS FALSE)) IS TRUE ORDER BY `f14`)) SELECT * FR
OM `MYWITH`;

Note: Tokens underlined in red indicate the clauses and elements
simplified by ClauseDelete, the black strike-through represents the
parts simplified by APOLLO, and the grey boxes highlight the elements
simplified by SQLess during the SQL query simplification process.

Figure 6: Queries simplified by different approaches

upon two datasets. In total, SQLess simplifies 32,741 SQL queries
from PINOLO Dataset and 180 queries from SQLRight Dataset.

Simplification Ratio. The column AvgSimRatio in Table 3
that SQLess can achieve the average simplification ratios of 72.45%
and 37.74% upon PINOLO Dataset and SQLRight Dataset, respec-
tively. We also observe that the average simplification ratio upon
PINOLO Dataset is much higher than the one upon SQLRight

Dataset. The significant difference in the simplification ratios be-
tween the two datasets can be ascribed to the intrinsic differences
in the SQL queries processed, where the length and complexity

SQLess: Dialect-Agnostic SQLQuery Simplification ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 4: Comparison with existing tools in PINOLODataset. C, A, and S indicate ClauseDelete, APOLLO, and SQLess, respectively.

DBMS

MaxSimRatio AvgSimRatio AvgTime (ms) MaxTime (ms)

C A S C A S C A S C A S

MySQL 75.34% 89.04% 93.47% 23.62% 48.62% 70.00% 398 423 595 654 1275 1,387

MariaDB 79.71% 85.82% 95.11% 17.51% 35.46% 76.27% 486 589 1,041 845 3,854 4,920

OceanBase 62.39% 82.60% 90.06% 24.09% 35.64% 50.90% 308 398 394 741 756 879

TiDB 79.19% 86.10% 93.16% 27.74% 36.59% 69.48% 264 246 254 576 934 1,023

of the queries notably influence the potential for simplification.
Longer SQL queries, which typically encompass a greater number
of clauses, offer more opportunities for simplification, contributing
to a potentially higher simplification ratio.

Simplification Time. As shown by the column AvgTime in
Table 3, the average simplification time upon PINOLO Dataset is
799.5 ms, while it takes SQLess 43.3 ms on average to simplify the
queries in SQLRight Dataset. Meanwhile, the columnMaxTime in
Table 3 shows that the maximal time costs upon PINOLO Dataset

and SQLRight Dataset are 4,920 ms and 403 ms, respectively. The
above statistics provide strong evidence that SQLess can achieve
high efficiency upon our experimental subjects, showing that SQ-
Less can be integrated into any existing DBMS testing frameworks
without introducing significant extra overhead.

Answer to RQ1: SQLess can simplify real-world SQL queries
effectively and efficiently. It achieves average simplification ra-
tios of 72.45% and 37.74% upon PINOLO Dataset and SQLRight
Dataset within 799.5 ms and 43.3 ms on average, respectively.

5.3 Comparison with Existing Approaches

To compare SQLess with existing SQL query simplification ap-
proaches, we implement ClauseDelete and APOLLO based on the
ANTLR MySQL grammar used in SQLess, such that ClauseDelete,
APOLLO, and SQLess can support parsing the same set of queries
in MySQL dialect. Finally, we evaluate the three tools upon PINOLO

Dataset and measure the simplification ratios and time accordingly.
Table 4 demonstrate the comparison results. It is evident that

SQLess consistently outperforms the baseline tools in terms of maxi-
mum and average simplification ratios. Comparedwith ClauseDelete,
SQLess , manifests a remarkable increase in the maximum simpli-
fication ratio by 24.06%(= (93.47% − 75.34%)/75.34%) for MySQL
and 19.32%(= (95.11% − 79.71%)/79.71%) for MariaDB. Against
APOLLO, the enhancement in the maximum simplification ratio
is 4.98%(= (93.47% − 89.04%)/89.04%) for MySQL and 10.82%(=
(95.11%− 85.82%)/85.82%) for MariaDB, highlighting the advanced
efficacy of SQLess. The average simplification ratio, a critical indi-
cator of the tool’s overall performance, also displayed a substantial
increment. Compared with ClauseDelete, SQLess improves the av-
erage simplification ratio by 196.36%(= (70.00% − 23.62%)/23.62%)
for MySQL and an impressive 335.58%(= (76.27%−17.51%)/17.51%)
for MariaDB. Compared with APOLLO, the two improvements are
43.97%(= (70.00% − 48.62%)/48.62%) and 115.09%(= (76.27% −
35.46%)/35.46%), respectively. We also conduct the Mann-Whitney
U test [3] upon the maximum and average simplification ratios
with the null hypothesis that SQLess does not outperform the other
approaches significantly. The test results rejected the null hypothe-
sis for both the maximum and average simplification ratios with

a confidence level over 0.95 (i.e., p-values are less than 0.05). The
statistical analysis provides a strong evidence that SQLess has a
significant superiority over the two baselines in terms of simplifica-
tion ratios. Figure 6 shows a concrete example of SQL query from
the PINOLO Dataset and different versions of simplified queries
made by different approaches. It is evident that the simplification
results achieved by SQLess are substantially superior to those of
ClauseDelete and APOLLO. We also offer more detailed cases in
a public GitHub repository [40], illustrating the systematic sim-
plification of complex SQL queries to essential components. The
enhancements in simplification rates are indicative of the sophis-
ticated strategies employed by SQLess, which leverage both alias
analysis and the construction of def-use graphs to ensure the se-
mantic correctness of the simplified queries. These strategies are
pivotal to the observed gains in terms of the simplification ratio,
confirming that a rich repertoire of simplification tactics backed by
rigorous semantic analysis can lead to substantial improvements of
the simplification.

We also compare SQLess with ClauseDelete and APOLLO in
terms of simplification time. As demonstrated by the column Avg-

Time in Table 4, SQLess takes more time to simplify the queries
than the two baselines, especially upon MySQL and MariaDB. The
root cause is that SQLess has to conduct rigorous semantic analysis
to ensure the semantic correctness, which introduces extra over-
head in the simplification. However, it should be noted that the
average time cost of SQLess is no more than twice average time
cost of each of the baseline. Meanwhile, the absolute average time
cost is quite low. Hence, it is worth achieving higher simplification
ratios with acceptable extra overhead in SQLess.

Answer to RQ2: SQLess achieves higher simplification ratios
upon experimental subjects than ClauseDelete and APOLLO,
and meanwhile, its time cost is within a comparable and ac-
ceptable range relative to the baselines.

5.4 Ablation Study

To quantify the benefit of our technical designs, we conduct a group
of ablation studies to evaluate how the adaptive parsing and the
semantic analysis contribute the simplification results.
Benefit of Adaptive Parsing. To quantify the benefit of the adap-
tive parsing in SQLess, we implement SQLess-NoAP without adap-
tive parsing. Specifically, we utilize the parser generated by ANTLR
for the MySQL grammar file as a foundation for simplification and
implement SQLess-NoAP on top of this parser. Note that the queries
in PINOLO Dataset are all compatible toMySQL, which implies that
all of them can be parsed by SQLess-NoAP. Therefore, we only
evaluate SQLess and SQLess-NoAP upon SQLRight Dataset and
measure the success ratios of parsing.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Li Lin, Zongyin Hao, Chengpeng Wang, Zhuangda Wang, Rongxin Wu, and Gang Fan

Table 5: Comparison between the success ratios of SQ-

Less and SQLess-NoAP upon PINOLO Dataset

DBMS SQLess-NoAP SQLess Improvement

MySQL 100.00% 100.00% 0.00%
PostgreSQL 67.35% 100.00% 48.47% ↑
SQLite 55.29% 100.00% 80.86% ↑

Table 6: Comparison between the simplification ratios of

SQLess and SQLess-NoSA upon SQLRight Dataset

DBMS SQLess-NoSA SQLess Improvement

MySQL 54.09% 70.00% 29.41% ↑
MariaDB 41.34% 76.27% 84.49% ↑
OceanBase 33.55% 50.90% 51.71% ↑
TiDB 59.10% 69.48% 17.56% ↑

Table 5 presents the success ratios of SQLess and SQLess-NoAP
in simplifying queries across different DBMS dialects in SQLRight

Dataset. The results show substantial improvements brought by our
adaptive parsing. In the SQLRight dataset, our adaptative parser
required the addition of 12 new rules for PostgreSQL and 50 for
SQLite to better handle these dialects. With these enhancements,
SQLess successfully simplifies 100% of queries for both PostgreSQL
and SQLite, whereas SQLess-NoAP, which does not incorporate
these new rules, only simplifies 67.35% and 55.29% of queries, ac-
cordingly. The improvements of success ratios for simplifying the
queries upon the two DBMDs are 48.47%(=(100% - 67.35%)/67.35%)
and 80.86%(=(100% - 55.29%)/55.29%), respectively. The comparison
results demonstrate the effectiveness of the adaptive parsing, which
is introduced to augment the adaptability of SQLess across vari-
ous DBMS dialects. Without the adaptive parsing, simplification
attempts falter at the parsing stage, making SQLess-NoAP confined
to specific DBMS dialects.

Benefit of Semantic Analysis. Similarly, we construct the other
ablation SQLess-NoSA to disable the semantic analysis. We employ
the PINOLO Dataset which contains more complex queries with a
substantial number of interdependencies between query elements,
to evaluate the impact of semantic analysis to SQL query simplifi-
cation. Note that the queries in SQLRight Dataset are very simple
and do not contain any dependencies between the elements. Hence,
we do not evaluate the ablation SQLess-NoSA upon them.

Table 6 show the simplification ratios of SQLess and SQLess-
NoSA upon SQLRight Dataset. The results indicate a significant
improvement in the simplification ratio when the semantic anal-
ysis is enabled. Specifically, the improvements are 29.41%, 84.49%,
51.71%, and 17.56% for MySQL, MariaDB, OceanBase, and TiDB,
respectively. This underscores the critical role of semantic analysis
in the simplification process, as SQL queries with semantic errors
are deemed invalid and cannot be executed. Benefiting from the
semantic analysis, SQLess can achieve the query trimming with
sufficient guidance and safely conduct an aggressive removal of
SQL constructs upon the queries.

Answer to RQ3: Both the adaptive parsing and the semantic
analysis are necessary and crucial to achieve an effective SQL
query simplification.

5.5 RQ4: Usefulness

To evaluate the usefulness of SQLess, we applied it to simplify
the real-world bug reports. To be more specific, we scrutinized the
bug tracking systems of the DBMSs in our evaluation benchmarks,
including MySQL, MariaDB, TiDB, OceanBase, SQLite, and Post-
greSQL, and searched for bug reports with the following criterion:
(1) the status of bug reports is either unresolved or unconfirmed;
(2) the bug is able to be reproduced with the given SQL queries
and the detailed information (e.g., DBMS version). Table 7 presents
a summary of our efforts to assess the impact of SQLess in real-
world scenarios. The table represents the stages in the bug reporting
process for various DBMSs and highlights the timespan from bug
detection to resolution for confirmed bug reports, using the RSD
and SRD metrics to underline the usefulness of SQLess.

Table 7: Overview of Bug Reports Simplified by SQLess

DBMS Submitted Awaiting Confirmed RSD SRD

MySQL 4 2 2 62.5 13
MariaDB 9 2 7 36.9 4.3
TiDB 3 0 3 219.7 1.7
OceanBase 3 0 3 246.3 0.7
SQLite 2 1 1 0 0
PostgreSQL 1 0 1 56 4

Sum 22 5 17 108.1 3.9

Note: The Submitted column indicates the total number of bug re-
ports submitted. The Awaiting column accounts for reports pending
confirmation. The Confirmed column indicates the bug reports that
developers have recognized as valuable for confirming or fixing bugs.
RSD (Report-to-Simplification Duration) denotes the average time,
in days, from bug reporting time to the time of submitting a simplified
SQL query. SRD (Simplification-to-Resolution Duration) represents
the average time, in days, from the time of submitting a simplified SQL
query to the time that the bug has been confirmed or resolved.
In total, SQLess reported the simplification queries for a total

of 22 bug reports that were previously unconfirmed or unresolved.
Due to our reports, 17 of them have been confirmed or resolved
by developers, reflecting a substantial confirmation rate of 77%.
Notably, all bug reports simplified for TiDB and OceanBase have
been met with positive responses by developers, as were seven
for MariaDB. This demonstrates the real-world applicability and
value of SQLess in aiding developers to simplify the SQL queries
effectively. With an average RSD of 108.1 days and an SRD of 3.9
days for the sum of confirmed reports, SQLess demonstrates a sig-
nificant impact in expediting the bug confirmation and resolution
process. For OceanBase, the usefulness of SQLess is particularly
noteworthy, where our tool facilitated the confirmation or fixing
of bugs that had been outstanding for an average of 246.3 days, all
within an average span of just 0.7 days. Owing to the rapid resolu-
tion times by the developers of PostgreSQL and SQLite, SQLess can
only simplify three bug reports for these DBMSs, focusing on issues
that were still unconfirmed or unresolved. To track the status of the
bugs we generated simplified queries, we published a list of these
bugs in a public GitHub repository [39].

The potential users of SQLess primarily fall into two categories.
First, the tool can greatly benefit designers of DBMS fuzzers. They
typically suffer from a dilemma that the malformed, complex, and
lengthy queries are more likely to trigger bugs but are less likely to

SQLess: Dialect-Agnostic SQLQuery Simplification ISSTA ’24, September 16–20, 2024, Vienna, Austria

be accepted by DBMS developers, which is highlighted by many
prior studies [7, 9, 30]. Second, SQLess can potentially benefit DBMS
developers when they have difficulties in debugging bugs involving
lengthy and complex queries, thereby reducing their workload. For
instance, the bug report #32981 for MariaDB elicited appreciative
feedback from an experienced developer: "Thank you very much!
Yes, it is quite useful." Similarly, in the bug report #1678 for Ocean-
Base, the developer acknowledged the usefulness of the simplified
query. Such positive feedback underscores the practical utility of
SQLess and its significance in assisting developers to effectively
address and fix bugs. Potential users can easily adopt SQLess into
their workflow with minimal effort by building their own oracle
checker or integrating it with their fuzzing tools.

Answer to RQ4: Feedback on SQLess reveals its considerable
usefulness in simplifying complex SQL queries from real-world
scenarios, earning commendations from developers and un-
derscoring its importance to both designers of DBMS fuzzers
and developers.

6 Discussion

In what follows, we provide more discussion on the threats to
validity and future work of SQLess.

Threats to Validity. Validity threats include the implementa-
tion of our approach. We address this by applying it to complex
queries from diverse DBMSs to verify correct implementation of
the adaptive parser and query trimmer. Another threat concerns the
theoretical guarantee of the simplification ratio. While we lack the-
oretical proof, our empirical evaluation on many complex queries
demonstrates its effectiveness.

Future Work. Ultimately, the usefulness of SQLess should be
evaluated by real developers in actual debugging practice. Although
we have conducted several case studies in this work, performing
more thorough and comprehensive user studies for more debugging
tasks is an important future work.

7 Related Work

Test Case Minimization. Delta debugging [12, 21, 49, 50] and Hi-
erarchical Delta Debugging [16] target simplifying failing test cases
to minimal ones that still produce failures. They can be utilized for
batch debugging of independent SQL statement collections or lists
of numbers. However, they cannot directly be used for SQL simplifi-
cation because they require adherence to strict grammar rules that
SQL’s complex and nested structures often violate. Nevertheless,
existing work has adapted the principles of Delta Debugging to
simplify complex SQL queries that lead to certain behaviors, such as
incorrect result sets or performance issues [7, 11, 27, 29, 31]. For ex-
ample, Reducer [27] employs a two-step approach for minimizing
queries: it sequentially removes each line and eliminates column
names from SELECT statements. Besides, RAGS [31] eliminates
terms within expressions and also removes WHERE and HAVING
clauses. Later, APOLLO [11] improves the above approaches by
adding several simplification strategies. Unfortunately, these tools
can achieve effective simplification only if there are few dependen-
cies between elements. An excessive amount of dependence yields
output that is not minimized adequately. Furthermore, these tools
expects structured input in the form of an AST, which makes these

tools ineffective for handling SQL queries in different dialects, as
they cannot generate ASTs effectively for such queries, leading to
simplification failures. SQLess is the first systematic exploration of
the dialect-aware SQL query simplification problem, distinguishing
our work from existing studies.

SQL Parsers for Different DBMSs. SQL language is an ISO/IEC
standard [8]. However, every database implements the standard
differently, uses different function names for the same operation,
and supports extensions accessing specific custom features. Cur-
rently, there does not exist one SQL parser for dialects of all popular
databases. Sqlparse [34] is a popular Python package using reg-
ular expressions to parse SQL queries, supporting most standard
queries but failing with more complex ones. There are also several
parsers that only support certain dialects. For instance, the Pincap
parser [23] and SQL Parser [33] in phpmyadmin cater to MySQL
and MariaDB, while libpgqery [14] and its derivatives serve Post-
greSQL. Different from the above parsers, JSQLParser [10] can
parse multiple SQL dialects but has poor extensibility, requiring
laborious manual effort for new dialects. Our work outperforms
existing SQL parsers in terms of generality and extensibility. Ben-
efiting from our adaptive parsing, SQLess does not demand any
manual work to extend the parser for a new dialect, which permits
automating the further simplification process.

Detecting Bugs in DBMSs. The reliability of DBMSs has gar-
nered significant research attention. Specifically, researchers have
focused on detecting two types of bugs in DBMSs: crashes and
logical bugs. To induce crashes in a DBMS, previous studies have
primarily concentrated on automating query generation. On the
one hand, generation-based methods employ well-defined rules to
create valid DBMS queries [5, 17, 35, 44], ensuring the syntactic va-
lidity of the queries. On the other hand, mutation-based approaches
apply specific forms of mutators to SQL queries [6, 48, 51]. In ad-
dition to automatically generating SQL queries, detecting logical
bugs requires an effective test oracle. For instance, SQLancer [29]
constructs equivalent queries to ensure consistent results. Similarly,
PINOLO [7] leverages the approximation relation as a specific type
of metamorphic relation acting as the test oracle. Our approach,
distinct from prior SQL testing studies, simplifies SQL queries using
SQLess, providing concise, compelling evidence to address bugs,
thanks to reduced query sizes.
8 Conclusion

SQL query simplification reduces the length of a lengthy SQL query
in different contexts, facilitating debugging and patching in DBMSs.
This paper presents SQLess, a dialect-agnostic approach for simpli-
fying SQL queries. SQLess effectively reduces the sizes of queries
generated by state-of-the-art DBMS fuzzers, achieving a high sim-
plification ratio with acceptable overhead. Furthermore, SQLess
has been demonstrated to support six different SQL dialects adap-
tively. It has shown great potential to be applied to widespread
applications in the field of database bug detection.

Acknowledgement

We thank anonymous reviewers for their insightful comments.
This work is supported by the Natural Science Foundation of China
(62272400), Leadingedge Technology Program of Jiangsu Natural
Science Foundation (BK20202001) and the fund from Ant Group.
Rongxin Wu is the corresponding author.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Li Lin, Zongyin Hao, Chengpeng Wang, Zhuangda Wang, Rongxin Wu, and Gang Fan

References

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers:

Principles, Techniques, and Tools (2nd ed.). Pearson Education, Chapter 4.
[2] ANSI. 2023. The SQL Standard - ISO/IEC 9075:2023 (ANSI X3.135). https://

blog.ansi.org/sql-standard-iso-iec-9075-2023-ansi-x3-135/. [Online; accessed
12-Dec-2023].

[3] Andrea Arcuri and Lionel C. Briand. 2011. A practical guide for using statistical
tests to assess randomized algorithms in software engineering. In Proceedings of

the 33rd International Conference on Software Engineering. 1–10.
[4] J Asplund. 2011. Data Science revealed: Data-driven glimpse into the burgeoning

new field.
[5] Carsten Binnig, Donald Kossmann, Eric Lo, and M Tamer Özsu. 2007. QAGen:

generating query-aware test databases. In Proceedings of the 2007 ACM SIGMOD

international conference on Management of data. 341–352.
[6] Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang. 2022. Griffin:

Grammar-free DBMS fuzzing. In Proceedings of the 37th IEEE/ACM International

Conference on Automated Software Engineering. 1–12.
[7] Zongyin Hao, Quanfeng Huang, Chengpeng Wang, Jianfeng Wang, Yushan

Zhang, Rongxin Wu, and Charles Zhang. 2023. Pinolo: Detecting Logical Bugs
in Database Management Systems with Approximate Query Synthesis. In 2023

USENIX Annual Technical Conference. 345–358.
[8] IEC ISO and N IEC. 2017. ISO/IEC. IEEE International Standard-Systems and

software engineering–Vocabulary (2017), 1–541.
[9] Zu-Ming Jiang, Jia-Ju Bai, and Zhendong Su. 2023. DynSQL: Stateful fuzzing for

database management systems with complex and valid SQL query generation. In
Proceedings of USENIX Security Symposium. 4949–4965.

[10] JSQlParser. 2023. JSqlParser. https://jsqlparser.github.io/. [Online; accessed
23-Nov-2023].

[11] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. 2019. Apollo:
Automatic detection and diagnosis of performance regressions in database sys-
tems. Proceedings of the VLDB Endowment 13, 1 (2019), 57–70.

[12] Yong Lei and James H Andrews. 2005. Minimization of randomized unit test
cases. In 16th IEEE International Symposium on Software Reliability Engineering.
10–pp.

[13] Yu Liang, Song Liu, and Hong Hu. 2022. Detecting Logical Bugs of {DBMS} with
Coverage-based Guidance. In 31st USENIX Security Symposium. 4309–4326.

[14] libpgquery. 2023. libpg_query: PostgreSQL Parser Library. https://github.com/
pganalyze/libpg_query. [Online; accessed 23-Nov-2023].

[15] Mariadb. 2023. Mariadb Database. https://mariadb.org/. [Online; accessed
Dec-2023].

[16] Ghassan Misherghi and Zhendong Su. 2006. HDD: hierarchical delta debugging.
In Proceedings of the 28th international conference on Software engineering. 142–
151.

[17] Chaitanya Mishra, Nick Koudas, and Calisto Zuzarte. 2008. Generating targeted
queries for database testing. In Proceedings of the 2008 ACM SIGMOD international

conference on Management of data. 499–510.
[18] MySQL. 2023. MySQL Bug Reporting Guidelines. https://bugs.mysql.com/.

[Online; accessed Dec-2023].
[19] MySQL. 2023. MySQL Database. https://www.mysql.com/. [Online; accessed

Dec-2023].
[20] OceanBase. 2023. OceanBase Database. https://www.oceanbase.com/. [Online;

accessed Dec-2023].
[21] Alessandro Orso, Shrinivas Joshi, Martin Burger, and Andreas Zeller. 2006. Iso-

lating relevant component interactions with JINSI. In Proceedings of the 2006

international workshop on Dynamic systems analysis. 3–10.
[22] Terence Parr. 2013. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf,

Chapter 9.
[23] pincap. 2023. Parser - A MySQL Compatible SQL Parser. https://github.com/

pingcap/tidb/tree/master/parser. [Online; accessed January-2023].
[24] pincap. 2023. TiDB Parser: The SQL Parser for TiDB. https://github.com/pingcap/

tidb/tree/master/parser. [Online; accessed Nov-2023].
[25] PostgreSQL. 2023. PostgreSQL Bug Reporting Guidelines. https://www.postgresql.

org/list/pgsql-bugs/. [Online; accessed Dec-2023].

[26] PostgreSQL. 2023. PostgreSQL Database. https://www.postgresql.org/. [Online;
accessed Dec-2023].

[27] pquery. 2023. PQuery: Multithreaded SQL Tester / Reducer. https://github.com/
Percona-QA/pquery. [Online; accessed 23-Nov-2023].

[28] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case reduction for C compiler bugs. In Proceedings of the 33rd

ACM SIGPLAN conference on Programming Language Design and Implementation.
335–346.

[29] Manuel Rigger. 2023. SQLancer. https://github.com/sqlancer/sqlancer. [Online;
accessed 23-Nov-2023].

[30] Manuel Rigger and Zhendong Su. 2020. Finding bugs in database systems via
query partitioning. Proceedings of the ACM on Programming Languages 4, OOPSLA
(2020), 1–30.

[31] Donald R Slutz. 1998. Massive stochastic testing of SQL. In VLDB, Vol. 98. Citeseer,
618–622.

[32] SQLite. 2023. SQLite Database. https://sqlite.org/. [Online; accessed Dec-2023].
[33] sqlparser. 2023. phpMyAdmin SQL Parser. https://github.com/phpmyadmin/sql-

parser. [Online; accessed Nov-2023].
[34] SQLParser. 2023. SQLParser. https://www.sqlparser.com/. [Online; accessed

Nov-2023].
[35] SQLSmith. 2023. SQLSmith. https://github.com/anse1/sqlsmith. [Online; accessed

June-2023].
[36] ANTLR Team. 2023. ANTLR (ANother Tool for Language Recognition). https:

//www.ANTLR.org/. [Online; accessed 23-Nov-2023].
[37] ANTLR Team. 2023. ANTLR DefaultErrorStrategy Class Documentation. https://

www.ANTLR.org/api/Java/org/ANTLR/v4/runtime/DefaultErrorStrategy.html.
[Online; accessed 23-Nov-2023].

[38] SQLess Team. 2023. SQLess. https://github.com/SQLess/AdaptSQLess.
[39] SQLess Team. 2023. SQLessBugReports. https://github.com/SQLess/SQLess_

Bugreports.
[40] SQLess Team. 2023. SQLessExample. https://github.com/SQLess/Examples/blob/

main/README.md
[41] SQLite Team. 2023. SQLite Bug Reporting Guidelines. https://www.chiark.

greenend.org.uk/~sgtatham/bugs.html. [Online; accessed Dec-2023].
[42] The ANTLR Organization. 2023. ANTLR Grammars Repository. https://github.

com/ANTLR/grammars-v4. [Online; accessed 23-Nov-2023].
[43] TiDB. 2023. TiDB Database. https://www.pingcap.com/tidb/. [Online; accessed

Dec-2023].
[44] Jiajie Wang, Puhan Zhang, Lei Zhang, Haowen Zhu, and Xiaojun Ye. 2013. A

model-based fuzzing approach for DBMS. In 2013 8th International Conference on

Communications and Networking in China. 426–431.
[45] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou, Huafeng Zhang,

and Yu Jiang. 2021. Industry practice of coverage-guided enterprise-level DBMS
fuzzing. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:

Software Engineering in Practice. 328–337.
[46] wiki. 2023. Comparison of Relational Database Management Sys-

tems. https://en.wikipedia.org/wiki/Comparison_of_relational_database_
management_systems. [Online; accessed Sep-2023].

[47] wikibooks. 2023. SQL Dialects Reference/Introduction. https://en.wikibooks.org/
wiki/SQL_Dialects_Reference/Introduction. [Online; accessed Nov-2023].

[48] Michal Zalewski. 2021. American Fuzzy Lop (2.52b). http://lcamtuf.coredump.cx/
afl. Accessed: June 2023.

[49] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?
ACM SIGSOFT Software engineering notes 24, 6 (1999), 253–267.

[50] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering 28, 2 (2002), 183–200.

[51] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Dinghao
Wu. 2020. Squirrel: Testing database management systems with language validity
and coverage feedback. In Proceedings of the 2020 ACM SIGSAC Conference on

Computer and Communications Security. 955–970.

Received 2024-04-12; accepted 2024-07-03

https://blog.ansi.org/sql-standard-iso-iec-9075-2023-ansi-x3-135/
https://blog.ansi.org/sql-standard-iso-iec-9075-2023-ansi-x3-135/
https://jsqlparser.github.io/
https://github.com/pganalyze/libpg_query
https://github.com/pganalyze/libpg_query
https://mariadb.org/
https://bugs.mysql.com/
https://www.mysql.com/
https://www.oceanbase.com/
https://github.com/pingcap/tidb/tree/master/parser
https://github.com/pingcap/tidb/tree/master/parser
https://github.com/pingcap/tidb/tree/master/parser
https://github.com/pingcap/tidb/tree/master/parser
https://www.postgresql.org/list/pgsql-bugs/
https://www.postgresql.org/list/pgsql-bugs/
https://www.postgresql.org/
https://github.com/Percona-QA/pquery
https://github.com/Percona-QA/pquery
https://github.com/sqlancer/sqlancer
https://sqlite.org/
https://github.com/phpmyadmin/sql-parser
https://github.com/phpmyadmin/sql-parser
https://www.sqlparser.com/
https://github.com/anse1/sqlsmith
https://www.ANTLR.org/
https://www.ANTLR.org/
https://www.ANTLR.org/api/Java/org/ANTLR/v4/runtime/DefaultErrorStrategy.html
https://www.ANTLR.org/api/Java/org/ANTLR/v4/runtime/DefaultErrorStrategy.html
https://github.com/SQLess/AdaptSQLess
https://github.com/SQLess/SQLess_Bugreports
https://github.com/SQLess/SQLess_Bugreports
https://github.com/SQLess/Examples/blob/main/README.md
https://github.com/SQLess/Examples/blob/main/README.md
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://github.com/ANTLR/grammars-v4
https://github.com/ANTLR/grammars-v4
https://www.pingcap.com/tidb/
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
https://en.wikibooks.org/wiki/SQL_Dialects_Reference/Introduction
https://en.wikibooks.org/wiki/SQL_Dialects_Reference/Introduction
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl

	Abstract
	1 Introduction
	2 Motivation
	2.1 Importance of SQL Query Simplification
	2.2 Challenges of SQL Query Simplification
	2.3 Key Idea

	3 Approach
	3.1 Overview
	3.2 Adaptive Parsing
	3.3 Semantics-Sensitive Query Trimming

	4 Implementation
	5 Evaluation
	5.1 Experimental Setting
	5.2 Effectiveness and Efficiency
	5.3 Comparison with Existing Approaches
	5.4 Ablation Study
	5.5 RQ4: Usefulness

	6 Discussion
	7 Related Work
	8 Conclusion
	References

