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Metamorphic testing is a widely used method to detect logical bugs in Database Management Systems (DBMSs),
referred to herein as MOLT (Metamorphic-Oracle based Logical Bug Detection Technique). This technique
involves constructing SQL statement pairs, including original and mutated queries, and assessing whether the
execution results conform to predefined metamorphic relations to detect logical bugs. However, currentMOLTs
rely heavily on specific DBMS grammar to generate valid SQL statement pairs, which makes it challenging
to adapt these techniques to various DBMSs with different grammatical structures. As a result, only a few
popular DBMSs, such as PostgreSQL, MySQL, and MariaDB, are supported by existingMOLTs, with extensive
manual effort required to expand to other DBMSs. Given that many DBMSs remain inadequately tested, there
is a pressing need for a method that enables effortless extension of MOLTs across diverse DBMSs.

In this paper, we propose QTRAN, a novel LLM-powered approach that automatically extends existing
MOLTs to various DBMSs. Our key insight is to translate SQL statement pairs to target DBMSs for metamorphic
testing from existing MOLTs using LLMs. To address the challenges of LLMs’ limited understanding of dialect
differences and metamorphic mechanisms, we propose a two-phase approach comprising the transfer and
mutation phases. QTRAN tackles these challenges by drawing inspiration from the developer’s process of
creating aMOLT, which includes understanding the grammar of the target DBMS to generate original queries
and employing a mutator for customized mutations. The transfer phase is designed to identify potential
dialects and leverage information from SQL documents to enhance query retrieval, enabling LLMs to translate
original queries across different DBMSs accurately. During the mutation phase, we gather SQL statement pairs
from existing MOLTs to fine-tune the pretrained model, tailoring it specifically for mutation tasks. Then we
employ the customized LLM to mutate the translated original queries, preserving the defined relationships
necessary for metamorphic testing.

We implement our approach as a tool and apply it to extend four state-of-the-art MOLTs for eight DBMSs:
MySQL, MariaDB, TiDB, PostgreSQL, SQLite, MonetDB, DuckDB, and ClickHouse. The evaluation results
show that over 99% of the SQL statement pairs transferred by QTRAN satisfy the metamorphic relations
required for testing. Furthermore, we have detected 24 logical bugs among these DBMSs, with 16 confirmed
as unique and previously unknown bugs. We believe that the generality of QTRAN can significantly enhance
the reliability of DBMSs.
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1 Introduction

Database Management Systems (DBMSs) are crucial in applications such as online banking and
e-commerce [19, 52]. However, the complex code logic and diverse functionalities of DBMSs often
make them susceptible to bugs, especially logical bugs that result in incorrect result sets being
returned without obvious symptoms [8, 20, 24, 26, 37–39]. Automated testing approaches use test
oracles [21] to verify the correctness of DBMS results. Notably, metamorphic oracle, a widely-
used method that constructs SQL statements maintaining either exact [25, 28, 29, 37–39, 44] or
approximate equivalence [20] with the original query, has been recognized as state-of-the-art in
DBMS testing for logical bug detection [20, 38, 40]. The detection of logical bugs is facilitated
by comparing the results of these mutated queries with those of the original queries. Unlike
traditional fuzzing [1, 24], it is essential to ensure both syntactic and semantic correctness, while
strictly preserving the metamorphic relationship between the queries. We call this approachMOLT
(Metamorphic-Oracle based Logical Bug Detection Technique).

To generate SQL statement pairs suitable for MOLTs, including original queries and mutated
queries, a general idea is to model the SQL grammar as an Abstract Syntax Tree (AST). This AST
model forms the backbone for generating original queries, ensuring syntactic correctness based
on the specific grammar of the target DBMS. These statements are then mutated according to
specific patterns to ensure that the mutated queries strictly adhere to a defined metamorphic
relationship with the original queries. For instance, Pinolo [20] customizes its parser specifically
for MySQL syntax. It randomly generates an original query based on the AST in the form of
“SELECT (COLLATION(`f`)) from t” and then, following a specific pattern, mutates this query
into “SELECT DISTINCT (COLLATION(`f`)) from t”, ensuring that the results of the original
query subsume the results of the mutated query.
Currently, state-of-the-artMOLTs predominantly depend on the grammar of specific DBMSs

to generate valid SQL statement pairs. However, this approach requires extensive manual effort,
limiting current MOLTs to support only a few popular DBMSs, such as PostgreSQL, MySQL, and
MariaDB. For instance, to integrate PostgreSQL’s grammar, SQLRight [29] required an additional
93,671 lines of code. Despite the existence of 423 different DBMSs in the market today [43], most
of which utilize unique grammar, there remains a pressing need to enhance their security. Con-
sequently, there is a great need for a method that can easily extend existing MOLTs to diverse
database environments with minimal effort.

In recent years, there has been a vast proliferation of software engineering applications built upon
large language models (LLMs) [16, 41, 46], from which we observe the exceptional performance of
LLMs in SQL generation [27, 51]. A potential solution [48] is to treat LLMs as domain experts for
multiple DBMS SQL transfer. By crafting suitable prompts, we can facilitate the direct transfer of
SQL statement pairs from the original database to the target database. This eliminates the need for
an AST model due to grammar differences. However, the direct transfer of SQL statement pairs
across DBMSs using LLMs poses two significant challenges:
Challenge#1. Limited understanding of the dialect differences between DBMSs. LLMs

lack a deep understanding of the dialect differences between DBMSs, which can lead to numerous
syntactic and semantic errors [23], potentially resulting in functionally inequivalent queries. For
example, when transferring a MySQL query “SELECT (COLLATION(`f`)) from t” to PostgreSQL,
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an LLM lacking domain-specific knowledge might incorrectly simplify it to “SELECT f from
t”, omitting the dialect-specific functions for character set comparison and sorting. This leads
to a functionally inequivalent transfer because the LLM fails to recognize that in PostgreSQL,
character set comparison and sorting can be performed using the COLLATE FOR function. In order
to improve the transfer of semantically equivalent queries, it is highly desirable to enhance the
LLM’s understanding of DBMS-specific dialects.
Challenge#2. Limited understanding of the metamorphic mechanisms. Secondly, the

limited understanding of metamorphic mechanisms by LLMs compromises their ability to maintain
the defined metamorphic relationship between original and mutated queries [23]. Without this
relationship, it becomes difficult to compare query results effectively, hindering the detection of
logical bugs. For example, as shown in Figure 1, when both the original and mutated MySQL queries
are translated into PostgreSQL, the mutated query loses the “DISTINCT” keyword, resulting in
a failure to maintain the predefined under-approximation relationship between the two queries.
Without this defined relationship, the ability to detect bugs through comparison of query results is
lost, severely undermining the effectiveness of metamorphic testing in finding logical bugs.

To address the challenges, we introduce QTRAN, a novel LLM-powered approach that automat-
ically extends existing MOLTs to various DBMSs. Our inspiration derives from observing how
developers createMOLTs in practice. To enhance the transfer capabilities of LLMs, our approach
mines dialect knowledge from SQL documents and extracts metamorphic relationships and mecha-
nisms from existingMOLTs’ SQL statement pairs. Our method includes two key phases: transfer
and mutation, each designed to overcome the aforementioned challenges:

1 Transfer Phase: In this phase, we aim to identify potential dialects and leverage information
from SQL documents to improve retrieval, helping LLMs translate original queries to different
DBMSs. Firstly, we construct a feature knowledge base for each DBMS to store dialect information,
gather feature data from SQL documents. These features are mapped to equivalent elements in the
target DBMS using a pre-established knowledge base enhanced by Retrieval-Augmented Generation
(RAG). The enriched information, along with the customized prompt, is then fed into the LLM. This
tailored input is designed to mitigate the risks of syntactic and semantic errors during the transfer
process, ensuring that SQL queries transferred from the original database to the target database
maintain their functional integrity.

2 Mutation Phase: Post-transfer, the mutation phase employs a deep understanding of meta-
morphic mechanisms to mutate the original SQL queries. We gather SQL statement pairs from
existing MOLTs to fine-tune the pretrained model, tailoring it specifically for mutation tasks.
By learning from established metamorphic mechanisms, the mutation LLM focuses on critical
transformation elements that preserve the defined relationships necessary for effective testing. A
critical consideration is that although existing MOLT provides mutated queries for the original
ones, directly transferring these mutated queries to the target DBMS using the transfer LLM may
not be effective. The diversity and randomness of SQL dialects (e.g., PostgreSQL allows type con-
version to be expressed as either “f::text” or “CAST(f AS TEXT)”) prevent the transfer LLM from
ensuring consistent results, potentially disrupting the metamorphic relationship. For example, our
experimental evaluations showed that, the success rate of direct transfer of existing mutated queries
is less than 35%. Therefore, a dedicated mutation LLM is essential to preserve these relationships.

We implement QTRAN based on GPT-4o-mini. Compared to other conventionalMOLTs which
require intensive labor to write a large amount of SQL grammar adaptation code, QTRAN is more
conveniently adapted to various DBMSs because it is free from the dependencies of grammar.
For evaluation, we implement and apply QTRAN to extend four state-of-the-artMOLTs for eight
DBMSs: MySQL, MariaDB, TiDB, PostgreSQL, SQLite, MonetDB, DuckDB, and ClickHouse. The
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SELECT (COLLATION(f)) AS f1 FROM t1；

SELECT DISTINCT (COLLATION(f)) AS f1 

FROM t1

A MySQL Statement Pair Generated by Pinolo

Under Approximation

SELECT f AS f1 FROM t1

SELECT CAST(f AS TEXT) AS f1 FROM t1

A PostgreSQL Statement Pair Transferred by LLM

⊇ =?

The equivalent statement 

in PostgreSQL

ChatGPT

Fig. 1. A failed example in Pinolo using LLMs to transfer SQL statement pairs directly. This is a

simplified example. Red text indicates dialect elements, highlighting how ChatGPT, due to a lack of dialect

knowledge, dropped the COLLATION function during the transfer process. Blue text represents critical code

elements for metamorphic testing; ChatGPT lost the DISTINCT keyword during the transfer process.

experimental results indicate that QTRAN ensures that over 99% of the transferred SQL statement
pairs satisfy themetamorphic relations required for testing, demonstrating its efficacy as an ideal tool
for extendingMOLTs to support metamorphic testing across diverse database systems. Furthermore,
we have detected 24 logical bugs among these DBMSs, of which 16 have been confirmed as unique
and previously unknown bugs. We believe that the generality of QTRAN can greatly help improve
the reliability of DBMSs.

In summary, we have the following contributions:

• We introduce a two-phase approach using LLMs that significantly simplifies the extension of
MOLTs to new DBMSs.

• We implement the approach in QTRAN. In evaluation, QTRAN ensures that over 99% of the trans-
ferred SQL statement pairs are suitable for metamorphic testing. Additionally, QTRAN discovered
24 previously unknown logical bugs, 16 of which have been confirmed.

• We have contributed a feature knowledge base containing dialect information for eight different
DBMSs, which plays a crucial role in enhancing the SQL translation task.

2 Background and Motivation

This section introduces basic knowledge about DBMSs such as SQL grammar and metamorphic
testing, and discusses the motivation, challenges associated with extending MOLTs in various
DBMSs, as well as our basic idea.
DBMS and SQL Grammar. A Database Management System (DBMS) is software that stores

and retrieves data based on a specified database model. Structured Query Language (SQL) is a
domain-specific language used to manage data within a DBMS, and SQL grammar describes both
the syntax and semantics of the language. Typically, most DBMS products comply with the basic
features of the ANSI SQL standard [2] for common operations but extend support for advanced
functionalities through their own unique SQL dialects. However, the grammar of these SQL dialects
are not compatible with one another, as similar features might be implemented with distinct
grammar variations across different DBMSs. For example, while the character set comparison and
sorting function is implemented as COLLATION in MySQL, it is implemented as COLLATE FOR in
PostgreSQL. There are approximately 423 popular DBMS products [43], each differing in supported
features, such as data types, functions, operators, etc.

Metamorphic Testing in DBMSs. Recent years have witnessed tremendous efforts in resolving
the test oracle for logical bug detection in the DBMSs. Notably, the metamorphic testing based
approach MOLT has been recognized to be state-of-the-art in DBMS testing for logical bug detec-
tion [20, 38, 40]. Metamorphic testing validates database systems by applying transformations to
original queries to generate new, mutated queries. Let an original query be represented as 𝑄0, and
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a set of transformed queries {𝑄1, 𝑄2, . . . , 𝑄𝑛} derived from applying metamorphic transformations.
The testing process validates that for any test database 𝐷 , the following relation holds:

𝐷 (𝑄0) ≈ 𝐷 (𝑄 𝑗 ), ∀𝑗 ∈ [1, 𝑛]
where ≈ represents either equivalence (=) or an approximate relation based on a predefined
metamorphic relationship. The key elements of metamorphic testing in this context include SQL
statement pairs, comprising original queries 𝑄0 and their mutated counterparts 𝑄1, 𝑄2, . . ., and
the verification that their execution results uphold either equivalence or near-equivalence under
the mutations applied.
The metamorphic testing process is conducted as follows: (i) Generate the original query 𝑄0,

serving as the basis for testing. (ii) Construct mutated queries𝑄1, 𝑄2, . . . , 𝑄𝑛 by applying predefined
metamorphic transformations to 𝑄0. (iii) Execute 𝑄0 on a test database 𝐷 to obtain results 𝑅0 =
𝐷 (𝑄0). (iv) Execute each mutated query 𝑄 𝑗 on 𝐷 , and collect their results 𝑅 𝑗 = 𝐷 (𝑄 𝑗 ) for each
𝑗 ∈ [1, 𝑛]. (v) Compare the results of 𝑄0 and 𝑄 𝑗 to verify that 𝑅0 ≈ 𝑅 𝑗 , ensuring either equivalence
or an acceptable level of variation, where ≈ represents the predefined metamorphic relationship.

For example, as shown in Figure 1, the original MySQL query is deliberately mutated following a
specific pattern to demonstrate an under-approximation. In this mutation, the “DISTINCT” keyword
is strategically added to ensure uniqueness in the results, thereby removing any potential duplicates.
This specific alteration helps highlight discrepancies between the original andmutated query results,
which, if present, may indicate a logical bug due to a violation of the defined approximation relation.

Motivation. The dependency on grammar limits the adaptability of MOLTs. Specifically, no
matter what generation model, SQL parser, or metamorphic mutator, they are all strongly dependent
on the DBMS grammar, and adaptation to a new DBMS requires an amount of extra code, which is
time-consuming and labor-intensive. Table 1 shows the lines of extra code of SQLancer, SQRight,
Pinolo and DQE to adapt for SQLite, PostgreSQL, MySQL, and MariaDB. This demonstrates that
due to their dependency on grammar, all of these tools demand significant code expansion to
accommodate different DBMSs. For example, SQLRight uses over 90,000 lines of code to build
the generation model for PostgreSQL. In contrast, Pinolo simplifies its implementation by only
supporting the common syntax shared between MySQL and MariaDB.

Table 1. The lines of code of SQLancer, SQRight, Pinolo and DQE to adapt for SQLite, PostgreSQL,

MySQL, and MariaDB. The numbers of lines of code are calculated from the official repositories of these

tools. Due to the complexities in adapting the grammar, SQLRight does not support MariaDB, and DQE does

not support PostgreSQL. Notably, although Pinolo supports both MySQL and MariaDB, it is implemented on

a grammar common to both.

LoC SQLancer SQLRight Pinolo DQE

SQLite 10,020 17,120 - 7,606
PostgreSQL 8,012 93,671 - -
MySQL 6,512 76,067 8,055 4,225
MariaDB 2,085 - 8,055 2,092

More importantly, there are 423 different DBMSs on the market [43], most of which use different
grammar. Present-day leading MOLTs are designed primarily for well-known DBMSs such as
MySQL, PostgreSQL and MariaDB. If we want to adapt them to these different DBMSs, it will take
too long and require too many human resources to be economically feasible. Consequently, there
exists a pressing need for a technique that allows for the straightforward extension of various
MOLTs across multiple DBMS environments.
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Challenges. Encouragingly, LLMs have shown stunning performance on various programming
language tasks (e.g., sql generation [27, 51]), which points out a promising way to overcome
challenges posed by syntactic differences across DBMSs. One potential solution is to leverage LLMs
to translate SQL statement pairs, which are used inMOLTs, between different DBMSs; however,
this approach presents significant challenges. Firstly, LLMs often lack a deep understanding of
the dialect differences between DBMSs, which can lead to numerous syntactic and semantic
errors [23], potentially resulting in functionally inequivalent queries. As shown in Figure 1, an LLM
might translate a MySQL query “SELECT (COLLATION(`f`)) from t” to a simpler but incorrect
“SELECT f from t” in PostgreSQL, omitting crucial dialect-specific functions like “COLLATION”,
which are essential for character set comparison and sorting. Secondly, LLMs’ limited grasp of
metamorphic mechanisms hampers their ability to maintain the necessary relationships between
original and mutated queries, critical for identifying logical bugs. This deficiency can result in the
loss of keywords such as “DISTINCT” so that the pair doesn’t preserve the intended metamorphic
relationships, thus undermining the effectiveness of logical bug detection.

Basic idea of QTRAN. To address the first challenge, QTRAN leverages information from SQL
documents to improve retrieval. We construct a detailed feature knowledge base from a variety of
SQL documents in advance. These features are then mapped to their equivalents in the target DBMS
using Retrieval-Augmented Generation (RAG), in which relevant snippets retrieved from a pre-
established knowledge base further enhance the mapping answer. The enriched information, along
with a customized prompt, is subsequently fed into the LLM to help the generation of semantically
correct statements. To address the second challenge, QTRAN utilizes a mutation phase that deeply
integrates metamorphic mechanisms into the LLM. We gather SQL statement pairs from existing
fuzzers and fine-tune the LLM specifically for mutation tasks with these pairs. This phase helps
LLMs to deeply understand the metamorphic mechanisms to mutate the original SQL queries.

Figure 2 illustrates a motivating example for how QTRAN extends MySQL queries to PostgreSQL.
In the transfer phase, the MySQL original query “SELECT (COLLATION(`f`)) FROM t” is converted
into a PostgreSQL-compatible form. The process begins by recognizing the “COLLATION” dialect in
MySQL using an error recovery mechanism [30]. Next, we consult the pre-built feature knowledge
base to map the “COLLATION” function to its PostgreSQL equivalent. This enriched knowledge is
then fed into the LLM, which generates a PostgreSQL-compliant query while ensuring that the
query’s semantics remain consistent. In the mutation phase, the customized LLM is used to generate
mutated queries. This LLM is fine-tuned by incorporating a “FixDistinctL” mutation strategy. The
fine-tuning process involves training the LLM on pairs of original and mutated queries, combined
with explanations of metamorphic mechanisms, to ensure that the mutated queries adhere to the
metamorphic testing principles crucial for identifying logical inconsistencies.

3 Approach

We propose an LLM-powered approach,QTRAN, to automatically extend existingMOLTs to various
DBMSs. Inspired by the process of DBMS metamorphic testing, we decompose the analysis into two
phases: the transfer and mutation phases. As shown in Figure 3, QTRAN starts with SQL statement
pairs from existing MOLTs and extends these pairs to new DBMSs through the two phases.

• Transfer Phase: During the transfer phase, we start by identifying specific dialect features such
as function names from the original queries using error recovery mechanisms. These identified
features are then mapped to their equivalents in the target DBMS using a previously established
feature knowledge base with the help of RAG. The enriched information and the original queries
are then fed into the transfer LLM, which adapts these queries to the syntax of the target DBMS,
ensuring accurate translation and semantic correctness.
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```MySQL pair

SELECT (COLLATION(f)) AS f1 FROM t1；
SELECT DISTINCT (COLLATION(f)) AS f1 FROM t1；
```

```PostgreSQL original sql

SELECT (COLLATE FOR(f::text)) AS f1 FROM t1；
```

```PostgreSQL pair

SELECT (COLLATE(f)) AS f1 FROM t1；
SELECT DISTINCT (COLLATE FOR(f::text)) AS f1 ；
```

Transfer Phase

Mutation Phase

ChatGPT

Customized 
LLM

Feature 

Knowledge 

Base

Prompt:  Let‘s think step by step. Convert the {SELECT 

(COLLATION(f)) AS f1 FROM t1} from {MySQL} to 

{PostgreSQL} . Here is feature knowledge related to this 

transfer: {MySQL feature: COLLATION(str) , PostgreSQL 

feature: COLLATION FOR(“any”)}

Dialect Recognition:   “COLLATION”

Feature Knowledge

MySQL

Feature: COLLATION(str)

Description: Return the collation of 

the string argument..... 

Examples: …

PostgresSQL

Feature: COLLATION FOR("any")

Description: Return the name of the 

collation of the value that is.......

Examples: …

Prompt: Please perform mutation according to the 

{FixMDistinctL} metamorphic oracle. {This mutation 

strategy will change "DISTINCT" in SELECT statement 

from true to false.}

Dialect Mapping
Retrieval Improvement

Customized 
LLM

Role Play and Answer Format

You are an expert in SQL statement. Mutate the 

seed SQL given by user into the mutated SQLs …

Transfer

SQL Pairs Collected from Pinolo

Original SQL:  Select xxx from xxx

Mutated SQL: Select DISTINCT xxx from xxx

…

Mutation Strategy

"FixMDistinctL" :"Distinct false -> true“. This 

mutation strategy will mutate all SELECT clauses…

Mutate

Fig. 2. Amotivating example illustrating howQTRAN transfers a SQL statement pair into the target

DBMS. The process of transferring a SQL statement pair involves two phases. In the transfer phase, original

queries are translated into statements that comply with the syntax of the target DBMS. In the mutation

phase, Customized LLM mutates these translated original queries.

Initial Original 

Query
Dialect Mapping Transfer LLMDialect 

Recognition

Target Original 

Query

Initial SQL 

Statement Pairs
Target Mutated 

Query

Mutation LLM Validator

Feature 

Knowledge 

Base

Role Play

SQL Pairs

Explanation

Existing MOLTs
Logical Bug 

Detection

Fine-tune

Phase1: Transfer Phase

Phase2: Mutation Phase

QTRAN

Fig. 3. The workflow of QTRAN consists of two phases. Transfer phase aims to transform the original

queries in SQL statement pairs from popular DBMSs into statements that match the grammar of the

target DBMSs. Mutation phase aims to further mutate these queries to ensure they maintain metamorphic

relationships essential for detecting logical bugs.

• Mutation Phase: In the mutation phase, we collect SQL statement pairs from existing MOLTs
and enrich these pairs with role information and explanations of metamorphic mechanisms
to fine-tune a mutation LLM. This tailored LLM is then used to mutate the original queries to
fulfill metamorphic relationships, crucial for detecting logical bugs effectively. Additionally, we
incorporate a validator to assess the effectiveness of the mutation LLM, ensuring that the mutated
queries maintain their correctness and accurately reflect the intended logical transformations.
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3.1 Transfer Phase

Transfer phase aims to transform original SQL queries from popular DBMSs to match the grammar
of target DBMSs. We identify dialect-specific features from the original query, map them to the
target DBMS using a feature knowledge base enhanced by RAG retrieval, and adapt the query to
the target syntax via the transfer LLM to ensure accurate translation and semantic correctness.

3.1.1 Feature Knowledge Base Construction. To address the challenges of LLMs lacking deep
understanding of DBMS dialects, leading to syntactic and semantic errors [23], we build a feature
knowledge base from structured SQL documentation to enhance the LLM’s comprehension of
dialect-specific differences. The reason for extracting features from SQL documentation is that
these documents are highly structured and contain detailed descriptions of the SQL syntax to each
DBMS. Most databases provide comprehensive SQL documentation, making it an ideal source for
constructing a robust and accurate feature knowledge base.
Next, we explain the process of constructing our feature knowledge base. We categorize the

main SQL features, which exhibit distinct dialect characteristics, into three key types: data types,
functions, and operators. It should be noted that these elements can be easily mapped across
different DBMSs because they typically perform similar operations, such as string manipulation,
mathematical calculations, or date handling, which are commonly required across all database
systems. To ensure consistency and accuracy, we develop a dedicated crawler for each DBMS to
extract the relevant features directly from their respective SQL documentation. Specifically, we
first collect feature-HTML pairs following the official feature classification criteria. Then, we scrape
information from the corresponding HTML pages for each feature and parse them into three key
components: the feature rule, a clear description, and illustrative examples. We design personalized
information parsing strategies for different databases, where the feature rules and illustrative
examples are typically extracted from code-related elements, while the remaining text-related
elements are considered as the clear description. Finally, we apply a data cleaning process including
invalid data filtering, duplicates removal, and so on. This unified structure across the knowledge
base allows the LLM to access enriched, organized dialect-specific knowledge, improving its ability
to translate queries accurately between different DBMSs.

We also conducted a comprehensive survey of the features within the feature knowledge base. To
the best of our knowledge, we are the first to perform an extensive investigation of dialect-specific
features. As of the time of paper submission, we have constructed a feature knowledge base for eight
popular DBMSs. Table 2 provides an overview of the feature knowledge base constructed for eight
popular DBMSs, detailing the distribution of standard and dialect-specific features across three
categories: data types, functions, and operators. Notably, dialect-specific variations in functions and
data types account for a significant portion of the features in many DBMSs, reflecting substantial
deviations from ANSI SQL standards. This observation underscores the importance of dialect
mapping to ensure compatibility and accurate interpretation across different DBMSs.

3.1.2 Dialect Recognition. Dialect recognition is a crucial step in transferring SQL queries between
different DBMSs. During this process, we leverage the error recovery mechanism provided by
parsers ANTLR [34] to handle dialect-specific elements [30]. Specifically, QTRAN first breaks the
content of the statement into a list of tokens, and then these tokens are sequentially fed to the
standard parser. When the parser encounters an unrecognized or dialect-specific token, such as a
function or data type unique to a particular DBMS, the error recovery mechanism allows the parser
to skip over the problematic section and continue parsing the remaining tokens. These problematic
tokens are precisely the objects for dialect mapping in the following steps. This approach enables

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA033. Publication date: July 2025.



QTRAN: Extending Metamorphic-Oracle Based Logical Bug Detection Techniques... ISSTA033:9

Table 2. Statistics of feature knowledge base. To determine whether a feature is dialect-specific, we

employ a systematic approach. First, we construct a simple query for each feature using an LLM. Then, we

parse this query with an ANSI standard parser. If the query fails to parse successfully, it indicates that the

feature does not conform to the standard SQL grammar, identifying it as a dialect-specific feature.

Data Types Functions Operators

DBMS Standard Dialect Standard Dialect Standard Dialect

MySQL 25 8 229 249 73 6
MariaDB 18 8 193 208 39 6
TiDB 18 25 166 106 44 10
PostgreSQL 22 7 48 552 70 29
SQLite 28 8 49 78 22 5
MonetDB 19 8 51 181 38 8
DuckDB 27 18 88 368 11 10
ClickHouse 11 39 84 1,145 32 11

the system to identify parts of the query that require potential dialect-specific handling without
prematurely terminating the parsing process.

3.1.3 Dialect Mapping. Dialect mapping is the process of translating features from the source
DBMS to their equivalents in the target DBMS using the feature knowledge base. Since dialect-
specific features, such as functions or data types, may vary significantly between DBMSs, we
employ a RAG approach to accurately perform the mapping. The process starts with extracting key
features, converting them into plain text, segmenting into chunks, and encoding them as vectors
stored in separate vector databases for different DBMSs. For each dialect-specific feature in the
source DBMS, similarity-based retrieval is used to find the most relevant features from the target
DBMS’s database. These retrieved features are then combined into an enhanced prompt to help the
LLM generate the corresponding response. If a direct match is not found, we use vector similarity
search to retrieve semantically related features. For instance, if a function like “COLLATION()” in
MySQL needs to be translated, the system will retrieve a similar function by vector embedding
similarity searching in the target DBMS, such as “COLLATE FOR()” in PostgreSQL, by leveraging
the semantic knowledge (e.g. function name and description) stored in the feature knowledge base.

3.1.4 Prompt Generation. Once the potential dialect-specific features are identified, we utilize
dialect mapping to enhance the retrieved knowledge, assisting the LLM in the transfer process.
Our prompt is highly structured, designed to guide the LLM step-by-step in performing accurate
SQL translations between DBMSs. As illustrated in Figure 4, the prompt includes three main
components: (1) a description that defines the task and provides context for the LLM, (2) the original
SQL statement in a code block for clarity, and (3) step-by-step commands using Chain-of-Thought
(CoT) reasoning to ensure the translation maintains equivalent semantics and column names while
adapting dialect-specific features.

3.2 Mutation Phase

In the mutation phase, we aim to mutate the original queries from the transfer phase according the
specific metamorphic mechanisms, which is essential for detecting logical bugs across different
DBMSs. In this phase, we fine-tune the LLM with SQL statement pairs, which originate from
existing MOLTs, along with enriched role-based information and explanations of metamorphic
mechanisms. We also validate the customized LLM to ensure that it upholds the logical consistency
and intended transformations necessary for effective logical bug detection. Next, we introduce two
key components of the mutation phase: Model Fine-tuning and Model Validator.
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Let’s think step by step. You are an expert in sql statement translation between different database management systems.
With the assistance of feature knowledge, transfer the following {original_db} statement to executable {target_db} statement 
with equivalent semantics.
‘’’sql
{original_db} statement: {sql_statement}
‘’’
Transfer should ensure following requirements:
1. All column names and feature variables remain unchanged.
2. Transfer as far as possible, and ensure similar semantics.
3 . Transfer by carrying out following instructions step by step.    {feature_knowledge}
4 . Check if transfer result satisfies requirements mentioned before.  If not,modify the result.
Answer the following information: {format_instructions}

Description

SQL 
Statements

Commands

Fig. 4. The transfer prompt template contains three main parts. The parts in parentheses represent the

variables in the prompt.

3.2.1 Model Fine-tuning. Fine-tuning is a crucial process that adapts pretrained LLMs to specialized
tasks by further training them on domain-specific datasets, thereby improving their performance
in targeted applications. This process customizes the general language capabilities of LLMs to excel
in specific domains. Typically, we start with a pretrained LLM GPT-4o-mini, which has already
learned a broad spectrum of language patterns and semantics from large text corpora. The model is
then fine-tuned on a smaller, domain-specific dataset, transferring its general language knowledge
to the mutation task [36].
The data for fine-tuning is sourced from existingMOLTs, which provide SQL statement pairs.

Figure 2 illustrates the fine-tuning process using the “FixMDistinctL” mutation strategy. The
fine-tuning process involves using a role-play format where the LLM is prompted as an expert
in SQL mutation. The LLM is fed with SQL pairs, such as those collected from Pinolo, where the
original SQL is mutated based on specific strategies like “FixMDistinctL”. By exposing the LLM to
these structured pairs, it learns the intended logical transformations, enhancing its ability to detect
logical bugs across various DBMSs. For each mutation strategy, we collected 20 SQL statement
pairs, which were validated by the Model Validator to confirm their effectiveness, ensuring that the
mutation LLM is exposed to a comprehensive variety of mutations during training [33]. QTRAN
fine-tunes all the mutation strategies supported by the MOLTs before testing, ensuring that the
model is well-prepared to handle any SQL statement pair during evaluation. It is worth noting that
eachMOLT may include multiple mutation strategies. For instance, Pinolo includes 25 mutation
strategy, such as “FixMDistinctL”. To ensure the uniqueness of each mutation, we need to collect
500 (20*25) SQL statement pairs for fine-tuning. This meticulous approach guarantees that every
mutation is carefully crafted and tailored for specific logical transformations.

3.2.2 Model Validator. The purpose of the Model Validator is to ensure the effectiveness of the
customized model after fine-tuning. We divide the collected SQL statement pairs into 80% for the
training set and 20% for the validation set. During training, the model is assessed using multiple
metrics, including training loss, training token accuracy, validation loss, and validation token
accuracy. These metrics are computed both on a small batch of data at each step and on the full
validation split at the end of each epoch. Once the training loss decreases to a stable point, and
validation token accuracy reaches a sufficiently high threshold (above 95%), we can confidently use
the customized model to mutate original queries, ensuring that the generated mutations maintain
the intended logical transformations for detecting bugs.

4 Evaluation

This section presents a comprehensive evaluation of the effectiveness of QTRAN. The experiments
conducted aim to answer the following research questions:
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Q1 Can QTRAN effectively transfer SQL statement pairs from existing MOLTs for use in
metamorphic testing across various DBMS environments? What is the time cost associated
with transferring SQL statement pairs using QTRAN ?

Q2 Can QTRAN find previously unknown bugs?
Q3 How does dialect mapping help SQL translation?
Q4 How does fine-tuning help mutation for metamorphic testing?
Test DBMSs. We focused on testing eight widely-used and large-scale open-source DBMSs:

MySQL, MariaDB, TiDB, PostgreSQL, SQLite, MonetDB, DuckDB, and ClickHouse. Table 3 describes
the detailed information of these databases.

Table 3. The demographics of the DBMSs under test

DBMS Version GitHub Stars DB-Engine First Release

MySQL 8.0.39 8.6K 2 1995
MariaDB 11.5.2 4.6K 15 2009
TiDB 8.3.0 33.1K 77 2017
PostgreSQL 16.3 16.1K 4 1989
SQLite 3.45.1 6.5K 10 2000
MonetDB 11.5.3 375 135 2004
DuckDB 1.1.2 23.6K 57 2018
ClickHouse 24.9.2.42 37.2K 37 2016

Baselines. In our evaluation, we selected four state-of-the-artMOLTs for extension: NoRec [37],
TLP [38], Pinolo [20], and DQE [44]. Below, we detail each of these tools:

(1) NoRec [37]: This technique involves transferring predicates from the WHERE clause to the
SELECT clause. A logical bug is identified if the results differ after this transformation.

(2) TLP [38]: This method decomposes a single query into three separate queries, each isolated
by its predicates. It asserts a logical bug if the collective results of these queries diverge from
the original query’s outcome.

(3) Pinolo [20]: Modifies query predicates to adjust constraints, expecting either a superset or
subset of the original results, which serves to confirm the logic’s soundness.

(4) DQE [44]: This approach varies the types of SQL queries—such as SELECT, UPDATE, and
DELETE—while keeping the predicates constant. It anticipates identical operations on rows
and flags discrepancies as potential bugs.

TheseMOLTs require an understanding of the SQL syntax for different DBMSs. Table 4 describes
the databases supported by theseMOLTs. To avoid redundant testing, we employ QTRAN to extend
these MOLTs and conduct tests on databases that are not natively supported by them.

Table 4. Applicability of existingMOLTs for the selected DBMSs

DBMS NoREC TLP Pinolo DQE

MySQL ✗ ✓ ✓ ✓
MariaDB ✓ ✗ ✓ ✓
TiDB ✗ ✓ ✓ ✓
PostgreSQL ✓ ✗ ✗ ✗
SQLite ✓ ✓ ✗ ✓
MonetDB ✗ ✗ ✗ ✗
DuckDB ✗ ✓ ✗ ✗
ClickHouse ✗ ✗ ✗ ✗
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Environment. We conduct the experiments on one server with 104-cores Intel(R) Xeon(R) Gold
6230R CPU @2.10GHz and 500 GB memory. The server operates under the Ubuntu 20.04 OS, with
the 5.4.0-135-generic version of the Linux kernel. If not otherwise specified, our experiments are
conducted by invoking OpenAI API (version gpt-4o-mini-2024-07-18), with the proposed prompt
in Section 3. To harness the deterministic nature of LLMs and ensure the generation of more
predictable and stable outcomes, we set the temperature to 0.0.

4.1 Q1. Effectiveness and Efficiency

In Q1, we aim to evaluate the effectiveness and efficiency of QTRAN in transferring SQL statement
pairs from existing MOLTs across various DBMS environments. This is essential as it directly
impacts the success of metamorphic testing.

1) Experimental Setup.
We utilized QTRAN to extend four state-of-the-art MOLTs, denoted as QTRAN +NoREC,

QTRAN +TLP, QTRAN +Pinolo, and QTRAN +DQE. These MOLTs were used to generate SQL
statement pairs as source pairs for transfer. To generate the original SQL statement pairs, we
selected the DBMS that each tool found the most bugs. Specifically, NoREC uses SQLite, DQE uses
TiDB, while TLP and Pinolo use MySQL. Our focus was solely on databases not supported by the
source MOLTs. In our experiments, a successfully transferred SQL statement pair is considered
effective if it preserves syntactic and semantic correctness when executed on the target DBMSs,
and fulfills predefined metamorphic relationships. We refer to such pairs as valid pairs. For SQL
statements that fail during the transfer phase, we discard them immediately, foregoing the sub-
sequent mutation phase. This strategy primarily impacts the efficiency of bug detection without
causing false positives; we will discuss the impact of the transfer phase in detail in Section 4.3.
For each evaluation, we ran QTRAN +MOLT (e.g., QTRAN +NoREC) for 5 hours on each target
DBMS under test. For pairs that do not conform to the metamorphic relations, there is a potential
indication of bugs. Subsequently, we verify whether they are true bugs through manual checks.

2) Results.
Table 5 illustrates the overall results of QTRAN in transferring SQL statement pairs across

unsupported DBMSs using the four extendedMOLTs. Overall, the high percentage of valid pairs
across all baselines, with most exceeding 99%, highlights the effectiveness of QTRAN in supporting
metamorphic testing through efficient SQL transfer. In particular, QTRAN +DQE successfully
transferred SQL statement pairs with a 100% valid pair rate on several DBMSs, including PostgreSQL,
MonetDB and DuckDB. The consistent results across different baselines and DBMSs demonstrate
that QTRAN can generate valid SQL statement pairs for metamorphic testing. For those SQL
statement pairs that failed to satisfy the metamorphic relationships, we manually analyzed the
potential bugs to exclude false positives. Figure 5 (a) shows the results of this analysis, illustrating
that the overall false positive rate across baselines remains low. All baselines achieved a true positive
rate of over 70%, with QTRAN +TLP reaching as high as 91%. Among the baselines, QTRAN +Pinolo
has a slightly higher number of false positives, with 11 instances. This marginally higher rate
may be due to the model’s handling of more complex, nested SQL queries, which can occasionally
lead to minor misinterpretations. It is important to note that false positives mainly result from
hallucinations in the mutation LLM. To address this, we designed a validator (see Section 3.2.2) to
ensure the model’s effectiveness. When accuracy exceeds 95%, the false positive rate is significantly
reduced, as this threshold indicates model convergence, ensuring generated mutations align with
logical transformations and minimizing incorrect outputs.
Figure 5 (b) illustrates the average time distribution per SQL statement pair for the transfer

and mutation phases across the four baselines. On average, QTRAN takes approximately 6.4
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Fig. 5. Transfer Efficiency and False Positive Analysis for QTRAN. Sub-figure (a) shows the manual

analysis of SQL statement pairs that failed to meet the metamorphic relationships, highlighting the number

of false positives excluded in each baseline. Sub-figure (b) shows the distribution of time spent on transfer

and mutation phases for each baseline.

seconds to generate a SQL statement pair. In particular, QTRAN +Pinolo exhibits a relatively higher
time allocation for the transfer phase, averaging 4.78 seconds per SQL statement pair, suggesting
that more time is required for complex query transformations. In contrast, QTRAN +NoREC,
QTRAN +TLP and QTRAN +DQE demonstrate a more balanced time distribution between transfer
and mutation phases, with transfer times of 2.98, 2.87 and 2.57 seconds, respectively. In summary,
our approach enables the generation of valid SQL statement pairs across various DBMSs with a
manageable time cost, supporting effective metamorphic testing.

Table 5. Performance of QTRAN with extended baselines on unsupported DBMSs. Column Pairs

represents the number of generated SQL statement pairs, Column Valid indicates the number of valid pairs,

and Column Percent is the percentage of valid pairs, calculated as Percent = (Valid/Pairs) × 100%.

DBMS QTRAN+NoREC QTRAN+TLP QTRAN+Pinolo QTRAN+DQE

Pairs Valid Percent Pairs Valid Percent Pairs Valid Percent Pairs Valid Percent

MySQL 980 978 99.8% - - - - - - - - -
MariaDB - - - 1,000 992 99.2% - - - - - -
TiDB 993 985 99.2% - - - - - - - - -
PostgreSQL - - - 1,010 1,005 99.5% 685 678 99.0% 1,024 1,024 100.0%
SQLite - - - - - - 720 715 99.3% - - -
MonetDB 897 897 100.0% 1,020 1,013 99.3% 730 727 99.6% 990 990 100.0%
DuckDB 1,049 1,049 100.0% - - - 798 785 98.4% 1,043 1,043 100.0%
ClickHouse 997 997 100.0% 1,005 1,002 99.7% 776 767 98.8% 981 980 99.9%

Total 4,916 4,906 99.8% 4,035 4,012 99.4% 3,709 3,672 99.0% 4,038 4,037 100.0%

Answer to Q1: QTRAN demonstrates effective transfer of SQL statement pairs with high
accuracy with an acceptable time cost across different DBMS environments, making it practical
for extending MOLTs to support metamorphic testing in diverse database systems.

4.2 Q2. Bug Detection.

In Q2, we aim to examine whether QTRAN can detect real-world bugs in DBMSs not supported by
existingMOLTs, which serves as an indicator of the effectiveness of QTRAN.

1) Experimental Setup.
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We employ the same experimental setup as Q1. We ran QTRAN+MOLT for 5 hours on each target
DBMS under test. We manually inspected potential bugs to exclude false positives and duplicate
bugs, then submitted bug reports to the developers.

2) Results.
As shown in Table 6, we reported a total of 24 logical bugs across different DBMSs. Among

these, 16 were confirmed by the developers, while 6 were identified as not bugs. Specifically, 9 bugs
in MariaDB and 3 in TiDB were confirmed by the developers. Additionally, MySQL, PostgreSQL,
DuckDB and ClickHouse each had 1 confirmed bug. Moreover, 2 bugs in ClickHouse are currently
pending confirmation by developers. We continue to document true positive bugs and submit
bug reports to developers, awaiting confirmation and feedback, a process that often requires a
considerable amount of time. To keep track of the status of our reported bugs, we release the bug
list in a public GitHub repository [45].

Table 6. Summary of the logical bugs found by QTRAN. The Reported column indicates the total

number of bug reports submitted. The Confirmed column indicates the bug reports that developers have

confirmed or fixed. The Not a bug column indicates the bug reports that developers have not confirmed or

will not fix. TheWaiting column indicates the bug reports that are pending confirmation.

DBMS Reported Confirmed Not a bug Waiting

MySQL 2 1 1 0
MariaDB 9 9 0 0
TiDB 4 3 1 0
PostgreSQL 1 1 0 0
SQLite 1 0 1 0
MonetDB 1 0 1 0
DuckDB 2 1 1 0
ClickHouse 4 1 1 2

Total 24 16 6 2

3) Case Study.
True Positive Bug. Figure 6 (b) shows a logical bug in DuckDB identified by QTRAN, triggered

by the translation of the “DATE” function from SQLite to the “CURRENT_DATE” function in DuckDB.
The source statement pair is derived from the NoREC oracle, which detects bugs by moving the
predicate from the “WHERE” clause into the “SUM” function, ensuring semantic consistency between
the original and mutated statements. After the QTRAN transfer, however, the results of the original
query and the mutated query in DuckDB diverged, indicating a logical bug.
Figure 6 (c) shows the results of directly transferring SQL statement pairs using GPT-4o-mini,

which resulted in execution failures. The lack of dialect-specific knowledge within LLMs led to the
erroneous translation of the SQLite “DATE” function to the “CURRENT_DATE” function in DuckDB,
causing the error “Scalar Function with name date does not exist!”. This highlights the
superiority of QTRAN in translating SQL statement pairs, which better understands dialect nuances.
In our bug list, 18 out of 24 bugs were overlooked due to the limitations of LLMs, highlighting
QTRAN ’s contribution to enhancing the reliability of DBMSs.

False Positive Bug. Figure 7 lists a representative bug that is classified as not a bug in TiDB. This
bug, identified as MariaDB BUG #30299, was confirmed as a bug in MariaDB but not recognized
as such by TiDB developers. The discrepancy arises due to different handling of SQL queries by
MariaDB and TiDB, especially concerning implicit type conversion and the parsing of conditional
expressions. Specifically, the condition ≥ ANY in sql2 is more relaxed than the condition = ANY in
sql1. In theory, the result of sql1 should be a subset of the result of sql2, which would indicate a bug
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-- DDL

CREATE TABLE t0(c0);
CREATE TABLE t1(c0);
CREATE VIEW v0(c0) AS SELECT t0.c0 FROM t1 LEFT JOIN t0;
INSERT INTO t1(c0) VALUES (‘example_value’);
-- Source Original Query

SELECT COUNT(*) FROM v0 WHERE (DATE('now'), c0) != (CAST(NULL AS TEXT), '0'); --Result: {0}

-- Source Mutated Query

SELECT SUM(CASE WHEN (DATE('now'), c0) != (CAST(NULL AS TEXT), '0') THEN 1 ELSE 0 END) 
FROM v0;  --Result: {0}

(a) Source SQL Statement Pair in SQLite

(b) Target SQL Statement Pair in DuckDB Transferred by QTRAN

-- DDL

CREATE TABLE t0 (c0 TEXT); 
CREATE TABLE t1 (c0 TEXT); 
CREATE VIEW v0 AS SELECT t0.c0 FROM t1 LEFT JOIN t0 ON t1.c0 = t0.c0;
INSERT INTO t1(c0) VALUES (‘example_value’);
-- Target Original Query

SELECT COUNT(*) FROM v0 WHERE (CURRENT_DATE, c0) != (CAST(NULL AS TEXT), '0’); --Result: {0}

-- Target Mutated Query

SELECT SUM(CASE WHEN (CURRENT_DATE, c0) != (CAST(NULL AS TEXT), '0') THEN 1 ELSE 0 END) 
FROM v0; --Result: {1}

DuckDB Bug #14589

-- DDL

CREATE TABLE t0(c0 TEXT);
CREATE TABLE t1(c0 TEXT);
CREATE VIEW v0 AS SELECT t0.c0 FROM t1 LEFT JOIN t0 ON t1.c0 = t0.c0;
INSERT INTO t1(c0) VALUES (‘example_value’);
-- Target Original Query

SELECT COUNT(*) FROM v0 WHERE (DATE('now'), c0) != (CAST(NULL AS TEXT), '0’); 
    --(duckdb.duckdb.CatalogException) Catalog Error: Scalar Function with name date does 
not exist!
-- Target Mutated Query

SELECT SUM(CASE WHEN (DATE('now'), c0) != (CAST(NULL AS TEXT), '0') THEN 1 ELSE 0 END)  
FROM v0;
 --(duckdb.duckdb.CatalogException) Catalog Error: Scalar Function with name date does 
not exist!

(c) Result of Direct SQL Statement Pair Transfer in DuckDB Using GPT-4o-mini

Failed!

Fig. 6. True Positive Bug: A logical bug in DuckDB when transferring source SQL statement pair in

SQLite. Sub-figure (a) demonstrates a SQL statement pair generated by NoREC in SQLite without errors.

Sub-figure (b) demonstrates the target SQL statement pair in DuckDB transferred by QTRAN, resulting

in an unexpected result due to a logical bug. Sub-figure (c) demonstrates the target SQL statement pair

directly transferred using GPT-4o-mini, leading to translation failures due to limited understanding of the

dialect difference between SQLite and DuckDB. The highlighted yellow background underscores the dialect

differences between SQLite and DuckDB.

due to inconsistent execution results. However, TiDB developers have remarked that "The query is
kind of ill-formed;" this inconsistency is due to different uses of implicit casting in the execution
plans for =ANY and ≥ ANY. The developers noted that "This is an uncommon syntax and is not
recommended for use." Furthermore, in our bug list, we have identified 6 instances classified as "not
a bug." These classifications are primarily due to the use of uncommon syntax by existing MOLTs,
designed to trigger edge-case bugs, which some DBMS developers choose not to fix.

Answer to Q2: QTRAN detected a total of 24 logical bugs across various DBMSs, with 16 con-
firmed by developers, indicating its effectiveness in uncovering real-world bugs in DBMSs.
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-- DDL

CREATE TABLE t (c1 FLOAT, c2 VARCHAR(20), key(c1));

INSERT INTO t VALUES (94.1106,‘-0'),(1,'3  '),(0.0001,'-1');

-- sql1: Original Query

SELECT f1 FROM (SELECT c1 AS f1 FROM t) AS t1 WHERE ((-f1)=ANY (SELECT c2 FROM t));    --Result: 1

-- sql2: Mutated Query

SELECT f1 FROM (SELECT c1 AS f1 FROM t) AS t1 WHERE ((-f1)>=ANY (SELECT c2 FROM t));    --Result: Empty

Fig. 7. Failure bug: Implicit casting and condition evaluation discrepancy in different DBMSs. TiDB

BUG #18560 found by QTRAN .

4.3 Q3. Contributions of Dialect Mapping

In Q3, we aim to investigate whether the key component of the transfer phase, dialect mapping,
can help us in successfully translating SQL statements.

1) Experimental Setup.
To understand the advantage of dialect mapping in the transfer phase, we implemented QTRAN−

without dialect mapping. We also compared two state-of-the-art traditional rule-based SQL transla-
tionmethods, namely SQLGlot [32] and JOOQ [18], to highlight our contribution to SQL translation.
SQLGlot is a lightweight SQL parser and transformer that supports the conversion of various SQL
dialects, offering strong flexibility and scalability. JOOQ, on the other hand, is a Java library that
facilitates database interaction by generating type-safe SQL queries, with support for multiple SQL
dialect translations. We collected 100 original queries from each of four state-of-the-artMOLTs,
denoted as QTRAN+NoREC, QTRAN+TLP, QTRAN+Pinolo, and QTRAN+DQE, and conducted
transfer experiments on DBMSs not supported by these baselines. The initial DBMS selection
for these baselines and the experimental configuration of Q1 are the same. We evaluated the
transferred statements in terms of syntactic correctness and semantic correctness.

2) Results.
As shown in Table 7, the semantic correctness ratios for QTRAN across various DBMSs are as

follows: MySQL achieves 0.80, MariaDB scores 0.81, TiDB reaches 0.79, PostgreSQL improves to
0.74, SQLite records 0.75, MonetDB achieves 0.56, DuckDB scores 0.50, and ClickHouse reaches 0.53.
Compared to QTRAN− , which represents the baseline without dialect mapping, these represent
increases of +23%, +42%, +22%, +72%, +34%, +133%, +56%, and +141% respectively. By contrast,
the semantic correctness ratios for SQLGlot and JOOQ are significantly lower, with SQLGlot
achieving ratios ranging from 0.01 to 0.14 across DBMSs and JOOQ ranging from 0.05 to 0.32. These
results underscore the limitations of rule-based methods in handling diverse SQL dialects compared
to the LLM-based QTRAN. The results indicate that incorporating dialect mapping significantly
improves the semantic correctness of SQL translations across different databases, underlining the
effectiveness and utility of dialect mapping in enhancing translation quality in LLMs.

Answer to Q3: Dialect mapping significantly enhances the semantic correctness of SQL
translations across different DBMSs by adjusting SQL queries to align with the specific syntax
and functional behaviors of target databases.

4.4 Q4. Contributions of Fine-tuning

In Q4, we investigate the necessity of fine-tuning pre-trained models for mutation tasks. This
section aims to clarify why QTRAN utilizes a fine-tuned mutation LLM to mutate transferred
original queries, instead of directly transferring existing mutated queries from conventionalMOLTs
or relying solely on prompt engineering to perform mutations with LLMs.
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Table 7. The syntactic correctness ratios and semantic correctness ratios across various DBMSs

under two baselines and two configurations. QTRAN
−
represents the baseline without dialect mapping

, and the improvement percentages in parentheses are relative to QTRAN
−
. Syntax correctness refers to

whether the SQL statement can be parsed successfully by the database parser, while semantic correctness

refers to whether the SQL statement can be executed successfully by the DBMS.

DBMS Syntactic Correctness Ratios Semantic Correctness Ratios

SQLGlot JOOQ QTRAN− QTRAN SQLGlot JOOQ QTRAN− QTRAN

MySQL 0.35 0.70 0.87 0.95 (+9%) 0.13 0.25 0.65 0.80 (+23%)
MariaDB – 0.67 0.84 0.90 (+7%) – 0.24 0.57 0.81 (+42%)
TiDB – – 0.67 0.75 (+12%) – – 0.65 0.79 (+22%)
PostgreSQL 0.26 0.56 0.65 0.86 (+32%) 0.08 0.18 0.43 0.74 (+72%)
SQLite 0.37 0.76 0.75 0.82 (+9%) 0.14 0.32 0.56 0.75 (+34%)
MonetDB – – 0.58 0.76 (+31%) – – 0.24 0.56 (+133%)
DuckDB 0.25 0.55 0.68 0.83 (+22%) 0.04 0.16 0.32 0.50 (+56%)
ClickHouse 0.19 0.41 0.61 0.79 (+30%) 0.01 0.05 0.22 0.53 (+141%)

1) Experimental Setup.
To emphasize the importance of fine-tuning during the mutation phase, we designed two baseline

configurations:
• QTRAN-POM (Prompt-onlyMutation of Transferred Queries). In this configuration, we
implemented QTRAN-POM without using a customized model. We directly apply the same
base model, GPT-4o-mini with carefully crafted prompts to mutate transferred original
queries. No fine-tuning or additional metamorphic relationship knowledge is incorporated
into the model. This baseline examines whether prompt engineering alone is sufficient for
generating valid metamorphic pairs without disrupting the predefined relationships between
queries.

• QTRAN-DTM (Direct Transfer of Existing Mutated Queries). In this setup, we first mutate
source original queries using existing MOLTs (e.g., NoREC, TLP, Pinolo, and DQE) and then
directly transfer both original and mutated queries to the target DBMS in transfer phase.
This baseline tests if existing mutated queries can be effectively adapted to the target DBMS
without requiring an LLM-driven mutation process during transfer.

We selected 100 successfully transferred target original queries from each of the four baselines:
QTRAN+NoREC, QTRAN+TLP, QTRAN+Pinolo, and QTRAN+DQE. We then performed muta-
tions on these queries using QTRAN and two baselines, QTRAN-POM and QTRAN-DTM. We
also employed the same evaluation method as in Q1. A valid SQL statement pair must ensure both
syntactic and semantic correctness and fulfill predefined metamorphic relationships. For pairs that
do not satisfy the metamorphic relationships, we conducted manual inspections.

2) Results.
Table 8 shows the percentage of valid pairs among QTRAN, QTRAN-POM, and QTRAN-DTM

across four baselines. QTRAN-POM, which applies prompt-based mutation without fine-tuning,
achieved valid pair rates below 50% across all baselines. QTRAN-DTM, which transfers existing
mutated queries directly to the target DBMS, resulted in even lower valid pair rates, ranging
from 0.08 to 0.34. The valid pair rates for QTRAN+NoREC, QTRAN+TLP, QTRAN+Pinolo, and
QTRAN+DQE are 0.98, 1.00, 0.99, and 1.00, respectively. Compared to baseline methods, QTRAN
achieves improvements of 120–376% over QTRAN-POM and 194–1138% over QTRAN-DTM, with
the highest gains reaching 376% and 1138% against each baseline, respectively. These enhancements
demonstrate the mutation LLM can help QTRAN effectively engage in metamorphic testing. By
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fine-tuning with a small subset of SQL statement pairs from existingMOLTs, the LLM better grasps
metamorphic mechanisms, thus significantly boosting its performance in mutating SQL statements
across different DBMS environments.
We analyze the need for fine-tuning models in the mutation phase. The poor performance of

QTRAN-DTM is due to several factors. First, transferring source and mutated queries separately to
the target DBMS may lose the metamorphic relationship between them. While dialect mapping
improves SQL translation success, it does not guarantee a one-to-one mapping for all dialect-specific
components, and LLMs’ inherent randomness causes variability in results. For example, the query
SELECT (COLLATION(f)) AS f1 FROM t1;” might be transferred as either SELECT (COLLATE
FOR(f::text)) AS f1 FROM t1;” or “SELECT (COLLATE FOR(f)) AS f1 FROM t1;”. Similarly,
mutated queries can lead to inconsistencies, breaking the metamorphic relationship. Additionally,
LLMs in complex queries often introduce hallucinations, generating incorrect components. For
instance, QTRAN-DTM achieved only 0.08 valid query pairs on the QTRAN+Pinolo dataset, in-
dicating frequent failures in maintaining metamorphic relationships. This results in missing SQL
components or incomplete mutations, undermining testing accuracy and increasing false positives,
making manual inspection inefficient. In contrast, fine-tuning the LLM for mutation tasks provides
critical benefits by preserving metamorphic relationships between SQL query pairs, which are
structured and consistent, making them well-suited for fine-tuning. Fine-tuned models demonstrate
lower false positive rates through validation against training data, significantly reducing manual
inspection overhead.

Table 8. Comparison of the percentage of valid pairs among QTRAN, QTRAN-POM, and QTRAN-

DTM across four baselines. The numbers in parentheses represent the improvement percentages of

QTRAN over QTRAN-POM and QTRAN-DTM, respectively.

Baselines QTRAN+NoREC QTRAN+TLP QTRAN+Pinolo QTRAN+DQE

QTRAN-POM 0.32 0.21 0.45 0.39
QTRAN-DTM 0.19 0.20 0.08 0.34
QTRAN 0.98 (+206% ,+416%) 1.00 (+376% ,+400%) 0.99 (+120% ,+1138%) 1.00 (+156% ,+194%)

Answer to Q4: Fine-tuning helps mutation for metamorphic testing by adapting the LLM to
better understand the metamorphic mechanisms, ensuring accurate metamorphic relationships
are maintained.

5 Discussion

Usefulness and extensibility. Our tool is highly user-friendly, allowing developers to seamlessly
integrateMOLTs designed for one DBMS and extend them to other DBMSs using a straightforward
and efficient method. The extensibility of our tool involves three primary efforts: 1 Developers
need to write a crawler to parse DBMS documentation and construct a feature knowledge base.
This process typically requires around 200 lines of code, with the code size for the eight DBMSs
we implemented ranging from 120 to 280 lines. 2 Fine-tuning data must be collected from the
SQL statement pairs provided by the source MOLTs. Using OpenAI’s API, developers can fine-
tune a customized LLM with minimal manual effort. 3 Verifying true positives from potential
bugs requires around 5 minutes per bug by a person familiar with DBMS operations. In contrast,
traditional methods require developers to have deep DBMS grammar knowledge and implement
extensive code to create new generators and mutators for each DBMS. Our approach reduces this
burden, providing a more efficient solution for extending MOLTs across various DBMSs.
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Limitations. The limitations of QTRAN mainly lie in the following aspects: 1 Although there
is an improvement in the syntactic and semantic correctness of transferred queries compared to
baselines (Table 7), the correctness ratios still have room for improvement. This is due to several
factors. First, differences in DBMS feature support can lead to non-executable queries when the
target DBMS lacks features present in the original query, such as unsupported functions. For
example, MariaDB offers geospatial functions not found in other DBMSs, though this issue is rare
according to our dialect mapping results. Second, LLM hallucinations can generate incorrect SQL
statements. Notably, queries that fail during the transfer phase are discarded and do not affect
the validity of the generated SQL pairs for metamorphic testing. 2 The efficiency of QTRAN is
closely tied to the response time of the underlying LLM. While the relatively slower response times
of LLMs result in lower efficiency compared to traditionalMOLTs, this trade-off underscores the
advantage of automation, as traditional methods require substantial effort and costly adaptations
by highly experienced experts to handle diverse scenarios.

Threats to Validity. In the implementation and evaluation of our system, we relied exclusively on
the GPT-4o-mini model during the transfer and mutation phases, which may pose threats to external
validity due to model-specific behaviors. Another potential threat is the evaluation methodology
for valid mutations in metamorphic testing, where mutations may appear to fulfill metamorphic
relationships but might not truly meet the criteria. However, our observations suggest that such
instances are exceedingly rare and do not significantly impact our ability to test DBMSs effectively.
Despite these threats, we have taken steps to mitigate them, and our findings provide valuable
insights into using LLMs for extending MOLTs for logical bug detection in various DBMSs.

6 Related work

Logical Bug Detection in DBMSs. Researchers have proposed several methods for obtaining
the test oracle to detect logical bugs, which can be categorized into three types: differential oracle,
oracle-guided synthesis oracle and metamorphic oracle [20].
The first category is the differential oracles. Differential oracles [9, 13, 42] detect logical bugs

by comparing the execution results of different DBMSs (or different versions of the same DBMS).
However, existing studies [1, 13, 35, 37, 38, 42] highlight that differential testing is limited in
its applicability, as not all DBMSs share the same SQL grammar or operation semantics, despite
supporting the core SQL syntax, with each DBMS forming its own dialect [42], thus restricting the
generality of differential testing. The purpose of QTRAN is to extend existingMOLTs to support
various dialects, therefore differential oracles are not considered within the scope of this paper.

The second category is the oracle-guided synthesis approach [39]. PQS synthesizes a query
that guarantees to return a specific row using its manually implemented interpreter. If the tested
DBMS fails to fetch the row, PQS identifies a logical bug. Although such methods are tailored to
the specific DBMS grammar, they only require constructing original queries to check the results.
Therefore, the transfer phase of QTRAN can easily extend this approach.

The third category is the metamorphic oracles. To avoid the drawbacks of the differential
oracle, many fuzzing methods [20, 28, 37, 38] use the metamorphic oracle to detect logical bugs.
NoREC [37] creates a query by transferring predicates from the WHERE clause to the SELECT clause;
the discovery of a logical bug occurs if results vary post-movement. Similarly, TLP [38] breaks
down a single query into three, isolating each by its predicates, asserting a logical bug if the
collective results diverge from the original query’s outcome. SQLancer [3] integrates the above
techniques and has been deployed to test various DBMSs. DQE [44] varies query types—such as
SELECT, UPDATE, and DELETE—keeping predicates constant and anticipates identical row operations,
flagging discrepancies as bugs. Pinolo [20] modifies query predicates to adjust constraints, expecting
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either a superset or subset of the original results to confirm logic soundness. EET [25] transforms
these expressions into semantically equivalent ones to construct queries that are semantically
equivalent. QTRAN is an extension of these works. Due to their dependence on specific DBMS
grammar, these tools are limited in adaptability. However, QTRAN successfully extends these works
to new DBMSs by enhancing dialect knowledge and learning metamorphic mechanisms.
LLM-based Fuzzing. Following the success of LLMs in Natural Language Processing (NLP)

tasks [10–12], the field of programming languages has seen significant advancements due to the
integration of sophisticated AI-driven models for code generation and analysis. This development
has naturally influenced fuzzing research: to help improve the fuzzing effectiveness, LLM has now
become one of the key enablers to assist the core processes of fuzzing [14–17, 22, 31, 50]. Last
year, the universal framework Fuzz4ALL [47] was introduced, which can target many different
input languages and diverse features of these languages. These advancements have led to research
into fuzzing techniques that employ LLMs, which are adept at producing syntactically informed,
well-formed inputs for fuzzing [47, 49].

Different from these tools, QTRAN focuses on extendingMOLTs for detecting logical bugs in
DBMSs. While the aforementioned tools utilize LLMs to produce syntactically informed inputs for
general fuzzing, they primarily detect easily observable error types, such as crashes and runtime
errors. QTRAN enhances this approach by integrating an understanding of various DBMS meta-
morphic mechanisms and dialect knowledge, enabling the expansion of existing MOLTs to a wide
range of DBMS grammar.

Automatic grammar adaption. Grammar adaptation is the process of adjusting the syntax and
structure of code or statements to conform to the rules of a different language. Code translation
has become a form of grammar adaptation, aiming to convert source code from one programming
language to another. For example, tools like C2Rust [5] and CxGo [4] serve as transpilers converting
C code to Rust and Go, respectively, while Sharpen [6] and Java2CSharp [7] facilitate the translation
from Java to C#. On the topic of DBMS dialects, SQLess [30] achieves syntax-agnostic SQL query
simplification by learning the syntax of different DBMSs through error recovery mechanisms.
Unlike these tools, QTRAN is designed to transform SQL statement pairs containing SQL dialects,
ensuring that the transformed pairs maintain metamorphic relationships. This approach allows
QTRAN to support a wider range of DBMSs without the need for extensive grammar-specific
configurations, making it a versatile tool for DBMS testing.
7 Conclusion

Due to the dependence of existingMOLTs on specific DBMS grammar, their extension capabili-
ties are limited. In this paper, we proposed QTRAN, an innovative, LLM-powered approach that
automatically extends existing MOLTs to various DBMSs. The evaluation results show that over
99% of the SQL statement pairs transferred by QTRAN satisfy the metamorphic relations required
for testing, and have detected 24 logical bugs across several DBMSs, with 16 confirmed as unique
and previously unknown. These results underline QTRAN’s potential to significantly improve the
reliability and testing robustness of diverse DBMSs.
8 Data Availability

The source code of QTRAN is available at https://github.com/QTRANll/QTRAN.
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