
111

ReachCheck: Compositional Library-Aware Call Graph
Reachability Analysis in the IDEs
CHAO WANG, School of Informatics, Xiamen University, China
LI LIN, School of Informatics, Xiamen University, China
CHENGPENG WANG, Purdue University, USA
JIAFENG HUANG, School of Informatics, Xiamen University, China
CONGXIA WU, School of Informatics, Xiamen University, China
RONGXIN WU∗, School of Informatics, Xiamen University, China

Call graph reachability analysis is essential for vulnerability detection, dependency conflict analysis, and
compatibility checks. However, modern software systems, particularly those developed within integrated
development environments (IDEs), often rely on third-party libraries (TPLs), which significantly increase
the analysis cost. This paper introduces ReachCheck, a compositional library-aware analysis for method
pair reachability in the IDEs. Specifically, ReachCheck summarizes TPL reachability via offline transitive
closure and integrates the summaries with application code on demand, eliminating redundant analysis.
Additionally, we use matrix representations for call graphs and employ fast matrix multiplication for transitive
closure, further improving efficiency. We have implemented our approach as a prototype and evaluated it upon
real-world projects. Compared to online traversal, function summary approaches and three state-of-the-art
graph reachability approaches (Ferrari, BL and BFL), ReachCheck achieves 237.75×, 78.55×, 84.86×, 4369.09×
and 80.91× speedup respectively. For downstream clients like dependency conflict detection and CVE risk
detection, ReachCheck completes analysis in 0.61 and 0.35 seconds, yielding 537.59× and 519.03× speedup
over existing techniques.

Additional Key Words and Phrases: Call graph analysis, reachability analysis, third-party libraries

ACM Reference Format:
Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu. 2025. ReachCheck:
Compositional Library-Aware Call Graph Reachability Analysis in the IDEs. ACM Trans. Softw. Eng. Methodol.
37, 4, Article 111 (August 2025), 30 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Call graph reachability analysis, which aims to determine whether a specific method may invoke a
target method directly or transitively [51], stands as a foundational program analysis problem. Its
effective solution can significantly benefit various downstream clients. Within the realm of software
component analysis (SCA), for instance, developers often need to pinpoint the methods within their
application code that could potentially be influenced by vulnerable methods in third-party libraries
∗Corresponding Author

Authors’ addresses: Chao Wang, School of Informatics, Xiamen University, Xiamen, China, wangc@stu.xmu.edu.cn; Li Lin,
School of Informatics, Xiamen University, Xiamen, China, linli1210@stu.xmu.edu.cn; Chengpeng Wang, Purdue University,
West Lafayette, IN, USA, wang6590@purdue.edu; Jiafeng Huang, School of Informatics, Xiamen University, Xiamen, China,
thghjf@stu.xmu.edu.cn; Congxia Wu, School of Informatics, Xiamen University, Xiamen, China, wucongxia1@stu.xmu.edu.
cn; Rongxin Wu, School of Informatics, Xiamen University, Xiamen, China, wurongxin@xmu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1049-331X/2025/8-ART111 $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

111:2 Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu

(TPLs) [39, 74]. The identified reachability facts from application code methods to vulnerable TPL
methods within the call graph serve to unveil potential vulnerabilities stemming from security
gaps within the software supply chain. Besides, clients engaged in other program analyses, such as
dependency conflict detection [67–69], TPL compatibility analysis [66, 83], and software debloating
[35], also rely heavily on call graph reachability analysis, leveraging it as an important building
block to support specific applications.

Despite several decades of research on call graph reachability analysis, there has been a notable
scarcity of studies focusing on its instantiation within Integrated Development Environments
(IDEs). In the IDE, where developers edit code incrementally, immediate feedback on whether a
newly written method may call a vulnerable method from a TPL enables proactive detection of
security and quality issues at an early stage. Identifying such issues during development, rather
than post-deployment, can significantly reduce the cost and effort of vulnerability remediation [79].
Therefore, we focus on incremental vulnerability detection, where developers make frequent and
localized code changes. When a new method call is added or modified, the IDE should promptly
determine whether this call may transitively reach a vulnerable method in the dependency tree.
To support this workflow efficiently, we formulate the analysis as a series of pairwise reachability
queries, each checking whether the newly added method can reach a known vulnerable method.
This formulation aligns well with the on-demand, method-level feedback expected in IDEs. It avoids
the overhead of whole-program reanalysis after each code change. However, achieving this objective
poses a significant challenge, particularly given the stringent time constraints imposed by the IDEs,
which typically necessitates finishing analysis tasks within mere milliseconds or seconds [45, 79].
Existing techniques typically construct a call graph first and then leverage Depth-First Search
(DFS) or Breadth-First Search (BFS) algorithms to traverse the graph [67–69, 74]. Nonetheless,
conducting such analyses on large-scale call graphs inevitably incurs significant time overhead. In
our preliminary study encompassing 15 Java open-source projects, a DFS or BFS-based approach
averagely spends 327.93 seconds addressing reachability queries. Hence, accelerating call graph
reachability analysis holds the potential to yield substantial benefits for a diverse array of program
analysis clients within the IDEs.
According to existing literature, leveraging a graph index to accelerate the graph reachability

analysis is one promising solution [36, 56, 61, 65, 78, 80]. Unfortunately, the performance of such
techniques would be far from satisfactory in answering call graph reachability queries in our
scenarios. This is because, the effectiveness of these approaches generally rely on the assumption
of steady graph structures, which is often broken in the IDEs during the development. Specifically,
the addition, removal, and replacement of TPLs are common operations in IDEs, which can lead to
significant changes of call graph structure. Under such circumstances, graph-indexing approaches
necessitate reconstructing a graph index from scratch, resulting in substantial computational costs.
To mitigate this issue, an intuitive idea is to construct an index for each TPL using an offline analysis,
and then combine their indices on-demand for performing call graph reachability analysis online.
Current graph indexing structures are generally designed for a single, stable graph and do not adapt
to graph changes. Consequently, when an on-demand composition of indexes is required, these
structures necessitate recalculating the indexes, making it impossible to reuse those previously
computed for TPLs.

This work presents a novel compositional approach to achieve an efficient call graph reachability
analysis in the presence of TPLs. Basically, our key idea originates from the two observations. First,
although the project under development frequently changes, the code in the TPLs is stable, which
permits us to reuse the reachability summaries of TPLs. Decoupling the TPLs from the projects can
avoid redundantly analyzing the TPLs multiple times for different projects, which can significantly
reduce the time overhead. Second, not all the TPLs are relevant to a reachability query. Only those

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

ReachCheck: Compositional Library-Aware Call Graph Reachability Analysis in the IDEs 111:3

Fig. 1. A motivating code example.

TPLs that directly or transitively depend on the queried TPL are useful for answering the given
reachability query. Therefore, opting to load solely the summaries of necessary TPLs on-demand,
rather than loading the ones of all TPLs indiscriminately, will significantly reduce the computation
overhead.
Based on the above insights, we propose a compositional call graph reachability analysis

ReachCheck. Technically, it consists of two lines of analysis, which target the TPLs and the project,
respectively. For each TPL, ReachCheck first collects all the call edges and summarizes the reach-
ability relation of the call graph by computing the transitive closure (TC) in an offline manner.
Notably, the computed summaries only preserve the portions of the call graph that are reachable
from accessible methods (See Section 4.1). By persisting the summaries related to the accessible
method to the disk, ReachCheck can reuse the analysis results when analyzing the project. Second,
when answering the reachability query upon the project using TPLs, ReachCheck constructs the
call graph for the project and retrieves the summaries of the TPLs on demand, based on which the
reachability relation can be determined. To achieve further acceleration, ReachCheck leverages
the fast matrix multiplication algorithm, which can significantly improve the efficiency in the TC
computation.

We implement our approach as a prototype and evaluate it using 100 popular open-source Java
projects in GitHub. It is shown that ReachCheck achieves 237.75× speedup over the online traversal
approach and 78.55× speedup over the function summaries approach. Meanwhile, ReachCheck
achieves 84.86×, 4369.09× and 80.91× speedup over three state-of-the-art graph indexing approaches,
namely Ferrari [56], BL [78] and BFL [61]. To demonstrate the usefulness of ReachCheck, we
instantiate two clients of call graph reachability analysis, i.e., dependency conflict detection and
CVE risk detection. Our experiments demonstrate that ReachCheck significantly enhances the
performance of both applications, thereby facilitating their integration into IDEs. Specifically,
ReachCheck successfully reproduces all the dependency conflicts detected by Decca [67] with the
average analysis time of 0.61 seconds for each project. For CVE risk detection, ReachCheck finishes
the analysis in an average of 0.35 seconds for each project and report 43 issues in total, which have
been confirmed and fixed by developers. In summary, the contributions of this paper are as follows:

• We propose ReachCheck, a novel compositional library-aware call graph reachability analysis
that addresses the reachability queries of method pairs in the IDE.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

111:4 Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu

• To answer the reachability of a given pair of methods efficiently, we introduce a fast matrix
multiplication algorithm to summarize the application and each TPL and stitch the summaries in
a demand-driven manner, which incurs low time and memory overheads.
• We conduct an extensive evaluation upon real-world Java programs. The results demonstrate that
our approach can significantly speedup dependency conflict detection and CVE risk detection,
achieving an average 537.59× and 519.03× speedup.

2 PRELIMINARIES
2.1 Acronyms and Their Definitions
This paper introduces numerous technical and scholarly concepts. To enhance readability, we
consistently use their corresponding acronyms. For easy reference, Table 1 provides a complete
glossary of all acronyms along with their definitions, as well as their occurrences in the paper.

Table 1. Definitions of acronyms used in this study

Acronym Definition Detail
1 SCA Software Component Analysis See in Section 1
2 TPL Third-party Library See in Section 1
3 IDE Integrated Development Environment See in Section 1
4 DFS Depth-First Search See in Section 1
5 BFS Breadth-First Search See in Section 1
6 TC Transitive Closure See in Section 1
7 OT Online Traversal See in Section 6.1
8 FS Function Summary See in Section 6.1

2.2 Motivation
Call graph reachability essentially determines whether there exists a valid call path from a source
node in the user project to a target node in the TPL in the call graph. It has been widely used in
various applications, including dependency conflict detection and CVE risk detection. Specifically,
dependency conflict detection refers to issues that arise when different versions of TPLs in a project
are incompatible, which can lead to runtime exceptions or subtle behavioral inconsistencies, due to
missing methods or unexpected API changes that manifest only during execution [67]. As shown in
Figure 1, the TPL𝐴 utilized by the client project invokes a method named bar_b offered by the TPL
𝐵 v1.0. If the developers import a wrong version of TPL 𝐵 without the method bar_b, for example,
TPL 𝐵 v2.0, a dependency conflict issue would arise. Obviously, such dependency conflicts can
be effectively detected by analyzing call graph reachability relations between the methods in the
project and TPLs. Another important downstream analysis is the CVE risk detection. As shown in
Figure 1, if a method offered by a TPL, i.e., the method bar_c in the TPL 𝐶 , is risky and assigned
with a CVE id, we need to identify the methods in the current project invoking the risky method
directly or transitively, such as the method foo. Similar to the dependency conflict detection, an
effective call graph reachability analysis enables us to discover potential vulnerabilities caused by
the usage of the risky TPL method, which can effectively promote the reliability of the projects in
the presence of TPLs.

Despite decades of research into call graph reachability analysis [35, 66–69, 83], there have been
few attempts that implement these techniques in IDEs to support analysis during the development
phase, which is crucial for proactively addressing software security and quality issues early in
industrial scenarios [45, 79]. Existing IDEs, such as IntelliJ IDEA [7], have integrated plugins Package

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

ReachCheck: Compositional Library-Aware Call Graph Reachability Analysis in the IDEs 111:5

Analyzer for detecting dependency conflicts and CVE risks [2, 8]. Regarding functionality, the
IntelliJ IDEA’s Package Analyzer identifies vulnerable libraries by matching the versions declared
in the project’s pom.xml against known entries in a vulnerability database. This approach can lead
to false positives, as it does not check whether the vulnerable methods are actually invoked by the
application code. Simply detecting whether an application uses a vulnerable library version may
not be sufficient, as the vulnerable methods might not be reachable from the application code—a
scenario commonly regarded as a false positive [38, 49, 50]. Moreover, a prior study [33] has shown
that developers are often reluctant to update dependencies due to fear of introducing breaking
changes. Although several specific detectors, such as Decca [67], Riddle [68], and Insight [74],
have made significant progress in reducing false positives, the unacceptable overhead introduced by
call graph reachability analysis severely impede their adoption within IDE. For example, as shown
in Table 2, we investigated the time spent on dependency conflict detection using Decca and Riddle
on 15 open-source Java projects. The results show that performing call graph analysis together
with DFS or BFS based approaches spend an average of 327.93 seconds resolving reachability
queries on 198,082 call edges and 24,618 methods. To mitigate the time cost, pre-analyzing TPLs to
generate call graphs for caching offline and then performing online queries by on-demand loading
the cached call graphs [43] is one promising solution. The column “TPL_CE” in Table 2 shows
the time cost of offline analyzing call graphs of the project and its TPLs using Class Hierarchy
Analysis (CHA) in the open source tool Soot [4]. On average, the time cost of this offline analysis
is 115.32 seconds. Despite that, the time cost of the online reachability queries on the cached call
graphs is still high, on average 212.61 seconds for the same dependency conflict tasks mentioned
above, which is unacceptable in IDEs. To better illustrate this cost, we include the column “Q.” in
Table 2, which reports the number of reachability queries for each project. Each query is defined
as a pair (𝑚𝑠 ,𝑚𝑡), where the𝑚𝑠 represents the source method in the client project from which
reachability is queried, and𝑚𝑡 is the target method in a TPL being queried. Specifically, in Decca,
𝑚𝑠 corresponds to a method within the client project, while𝑚𝑡 refers to a method that exists in
a version of a TPL excluded by Maven due to dependency conflicts1. For instance, the platform
project involves 7,922 queries, each verifying whether a method in the application can reach a
method in a TPL. It is apparent that such high time cost does not meet the efficiency requirement
of IDE plugins. Existing literature [45, 79] indicates that the analysis time of an IDE plugin should
be within a few seconds or even milliseconds. Therefore, accelerating the call graph reachability
analysis is critical for various program analysis client within IDEs.

2.3 Preliminaries
According to our investigation, existing studies [36, 56, 61, 65, 78, 80] on graph reachability analysis
attempt to achieve the acceleration by constructing graph indices. However, the adaptation of
such techniques fails to yield satisfactory performance in our scenarios. The complex and dynamic
environment of an IDE, such as the addition, deletion, or replacement of a TPL, often necessitates
the recalculation of index nodes, thereby incurring significant overhead. For example, Dual [65]
traverses the graph and generates a spanning tree with interval-based labels. Each node in this tree
is assigned an ID and an interval [𝑎, 𝑏). By comparing these intervals and IDs, reachability can be
determined quickly. However, if TPLs are added, removed or replaced, it will result in the changes
in the degrees of the nodes in the tree, which requires a recalculation of the IDs and intervals of
the spanning tree. Repeatedly indexing process would introduce significant overhead and further
degrades the efficiency of the overall reachability analysis.

1When a project depends on multiple versions of the same library, Maven will exclude one of them to resolve the conflict,
and the𝑚𝑡 is a missing method from the TPL due to dependency conflicts [67].

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

111:6 Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu

Table 2. The time costs in the DC detection

Projects Sum. TPL_CE R_1 RA R_2 Q. D.
beam[9] 666.07s 303.23s 45.53% 295.19s 44.32% 25,492 30
truth[21] 63.77s 39.40s 61.78% 22.82s 35.78% 1,700 16

platform[17] 597.75s 151.14s 25.28% 414.81s 69.40% 7,922 80
webcam[23] 267.39s 101.09s 37.81% 156.61s 58.57% 1,672 52
hadoop[12] 34.88s 14.66s 42.03% 19.31s 55.36% 472 29
storm[25] 387.67s 116.92s 30.16% 249.90s 64.46% 18,400 26
saturn[22] 492.47s 111.06s 22.55% 334.50s 67.92% 62,098 43
ff4j-s[18] 1154.82s 358.64s 31.06% 782.08s 67.72% 2,082 60
azure[19] 179.63s 63.77s 35.50% 108.15s 60.21% 852 32
st-js[14] 72.78s 37.56s 51.61% 33.26s 45.70% 276 16
dubbo[15] 418.23s 122.60s 29.31% 269.88s 64.53% 16,596 42
ff4j[1] 346.92s 119.29s 34.39% 220.44s 63.54% 15,485 43

jetbrick[20] 39.01s 25.06s 64.24% 13.55s 34.73% 70 11
styx[16] 381.87s 129.91s 34.02% 234.73s 61.47% 6,862 36

geowave[13] 72.68s 35.50s 48.84% 33.99s 46.77% 12,768 18
Avg. 345.06s 115.32s 33.42% 212.61s 61.62% 11,515 36

TPL_CE: The time of analyzing TPLs to generate call edges.
RA: The query time of reachability analysis.
R_1: The proportion of the time (𝑇𝑃𝐿_𝐶𝐸/𝑠𝑢𝑚) .
R_2: The proportion of the time (𝑅𝐴/𝑠𝑢𝑚) .
Q.: The number of queries for the detection.
D.: The number of dependency trees for the project.
The time required for loading the runtime environment is not listed.

An intuitive adaptation is to create graph indices offline for each TPL and dynamically combine
these indices during queries to handle graph changes caused by TPL modifications. However, the
existing graph indexing approaches cannot work well in such an adaptation. Specifically, indexing-
based approaches typically label a series of nodes and determine reachability by checking if the
labels of two nodes intersect. In essence, existing graph indexing approaches are unable to directly
answer the question about which nodes are reachable from a given node. Therefore, to determine
the reachability from a source node, one must perform a reachability query to build the connection
between that node and all other nodes in the graph, which essentially degenerates into the BFS/DFS
traversal approach. As shown in Figure 1, when combining each TPL’s index, we must first query
the reachability from each method in the TPL 𝐴 to each method in the TPL 𝐵, since these indices
alone do not directly tell which nodes are reachable from the TPL 𝐴. Therefore, the adaptation of
existing indexing approaches is not practical enough to be deployed in IDEs.

2.4 Key Idea
To effectively reduce the time required for graph reachability analysis, we design a compositional
reachability analysis method for call graphs in the presence of TPLs,‘’ which includes the offline
and online analyses. In the offline analysis, for each TPL, we perform call graph analysis to collect
all call edges and generate the summaries to store in the disk. When answering the call graph
reachability query online, we retrieve the summaries of necessary TPLs on demand from the disk,
so as to reduce the computation overhead.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

ReachCheck: Compositional Library-Aware Call Graph Reachability Analysis in the IDEs 111:7

Fig. 2. Two kinds of call graphs of the motivating code example in Figure 1

In the offline analysis, we propose to leverage TC which essentially encodes the reachability
information among all nodes as the summaries. Unlike existing graph indexing approaches, TC
supports answering the question of which nodes are reachable from a given node in the call graph,
thus aiding in establishing connections among different TPLs. For instance, in the call graph of
the example code shown in Figure 2, for the TPL 𝐴, our initial input consists of every edge within
the library, including the edges 3 , 4 , 5 , 6 and 7 . We define the graph formed by combining
these edges as the internal call graph, with a detailed definition in Section 3.2. After computing
the TC, we determine that foo_a can reach both bar_b, cor_a and foo_c, corresponding to the
edges 9 , 10 and 11 . The edges 9 (connecting TPLs 𝐴 and 𝐵) and 11 (connecting TPLs 𝐴 and 𝐶)
are identified as the connecting edges between the TPLs. Through these edges, we can establish
connections with other libraries. The global call graph combines all call edges from the entire
project, including TPLs. A detailed definition can be found in Section 3.2.
When answering the reachability query within the project utilizing TPLs, we retrieve the sum-

maries of the TPLs on demand, based on which the reachability relation can be determined. Instead
of indiscriminately loading all TPLs, we identify the TPLs relevant to the reachability query based
on the dependency relations among TPLs, selectively loading summaries of TPLs on the dependency
paths for composition. Taking Figure 2 as an example, to determine if the project code can reach
the risky method in TPL 𝐶 , we selectively load only the summaries of TPLs 𝐴 and 𝐶 which are
directly involved in the reachability path from Host to bar_c. This design significantly reduces the
time overhead.
In the following sections, we first introduce the preliminaries and formulate the problem in

Section 3. Then we demonstrate the technical details of our compositional call graph reachability
analysis in Section 4. After illustrating the applications and implementations of our approach in
Section 5, we present the evaluation results in Section 6, which provide sufficient empirical evidence
to demonstrate the effectiveness of our approach.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

111:8 Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu

Project 𝑃 := {𝐹+ | 𝑃∗}
Source File 𝐹 := 𝑀+

Method𝑀 := (modifier, name, 𝑆𝑡𝑚𝑡+)
Statement 𝑆𝑡𝑚𝑡 := 𝑐 | . . .

Function Call 𝐶 := invoke(𝑚)

Fig. 3. The project syntax.

3 PROBLEM FORMULATION
This section first presents the program syntax (Section 3.1) and then formulate call graph models for
applications using TPLs (Section 3.2). At the end of the section, we state the call graph reachability
problem (Section 3.3).

3.1 Program Syntax.
We formalize the project syntax in Figure 3. We define a project 𝑃 as a set of source code files 𝐹 and
a collection of TPLs used in the development of the project. In this paper, we also consider a TPL as
a project that contains multiple source code files and their dependent projects. Within each source
code file 𝐹 , at least one method𝑀 is defined. A method𝑀 is characterized by a modifier, a fully
qualified name, and a sequence of statements. Particularly, a modifier indicates the accessibility that
whether a method is public, protected, or private. When analyzing the statement in a method,
we only focus on the function call statements. It is worth noting that the aim of our work is to
target the reachability analysis upon the call graph. Our work primarily assumes the caller-callee
relation as a prerequisite, taking for granted that all possible callee functions for each function call
statement are determined, rather than delving into additional complex analyses like class-hierarchy
and pointer analysis.

3.2 Call Graph Models.
To facilitate the formulation of call graph reachability problem, we introduce two important call
graph models as follows, which formalize different forms of caller-callee relations in a project using
TPLs.

Definition 3.1. (Internal Call Graph) Given a project 𝑃 , its internal call graph 𝐺 is a pair (𝑀, 𝐸),
where 𝑀 and 𝐸 are the sets of the methods and call edges, respectively. Specifically, a method
𝑚 ∈ 𝑀𝑖 can be defined in 𝑃 or𝑚 ∈ 𝑀𝑜 , offered by a TPL of 𝑃 . A call edge 𝑒 ∈ 𝐸 has the following
two forms:
• 𝑒 := (𝑚𝑠 ,𝑚𝑡) ∈ 𝐸𝑖 ⊆ 𝐸 is an inner call edge if𝑚𝑠 ∈ 𝑀𝑖 and𝑚𝑡 ∈ 𝑀𝑖 .
• 𝑒 := (𝑚𝑠 ,𝑚𝑡) ∈ 𝐸𝑜 ⊆ 𝐸 is an outer call edge if𝑚𝑠 ∈ 𝑀𝑖 and𝑚𝑡 ∈ 𝑀𝑜 .

Example 3.2. An example of the internal call graph in Figure 2 is the call graph for the TPL 𝐴 in
the code example in Figure 1. The TPL 𝐴 has five call edges: 3 , 4 , 5 , 6 and 7 . Specifically, the
edges 3 , 4 and 5 are inner call edges, while the edges 6 and 7 are outer call edges.

The internal call graph follows the standard formulation of caller-callee relation. In the library-
aware program analysis, we also need to analyze the program constructs in the TPLs. Hence,
we introduce the second call graph model to offer a global perspective for analyzing call graph
reachability upon the projects using TPLs.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

ReachCheck: Compositional Library-Aware Call Graph Reachability Analysis in the IDEs 111:9

Jar 1. Internal Call Graph
Summarization

2. Demand-driven
Summary Retrieval

3. Reachability
Analysis

SummariesProject

<𝑚!, 𝑚">

Si SoTPLs

Fig. 4. The workflow of ReachCheck

Definition 3.3. (Global Call Graph) Consider a project 𝑃 using a set of TPLs L = {𝐿𝑖 | 1 ≤ 𝑖 ≤ 𝑛}
(𝑛 ≥ 1). Assume the internal call graphs of 𝑃 and each TPL 𝐿𝑖 are𝐺𝑃 = (𝑀𝑃 , 𝐸𝑃) and𝐺𝐿𝑖 = (𝑀𝐿𝑖 , 𝐸𝐿𝑖),
respectively. Then the global call graph of 𝑃 is 𝐺 := (𝑀, 𝐸) defined as follows:

𝑀 = 𝑀𝑃

⋃
(
⋃

1≤𝑖≤𝑛
𝑀𝐿𝑖), 𝐸 = 𝐸𝑃

⋃
(
⋃

1≤𝑖≤𝑛
𝐸𝐿𝑖)

Basically, the global call graph is stitched from the internal call graphs of the project and its TPLs.
In particular, the outer call edges in each internal call graph depict caller-callee relations across the
project and TPLs. Notably, all the methods and caller-callee pairs induced by the function calls in
the project and TPLs are completely encoded in the global call graph. Hence, it can serve as the
ingredient for examining call graph reachability in a library-aware manner.

Example 3.4. Figure 2 shows four internal call graphs of the project Proj and its three TPLs,
each of which is located in a rectangle zone. There are four outer call edges, including 1 , 2 , 6 ,
and 7 . Ultimately, all the methods, inner call edges, and outer call edges form the global call graph
𝐺 of the project Proj using the three TPLs.

3.3 Problem Statement.
As formulated in Definitions 3.1 and 3.3, the two call graph models are important intermediate
representations of a project using TPLs. By conducting specific downstream client analyses upon
them, we can understand how a method in the current project invokes a method in a TPL, which has
significant impact in improving software security and quality. For example, if there is a path from a
method in the current project to a risky method in a TPL, we can detect a potential vulnerability
caused by the usage of insecure TPLs. For example, as reported in Issue#309 [1] of GitHub project
ff4j/ff4j [11], the developer does not know that they are indirectly using a risky method in a
TPL, while a security expert finds this potential call path through call graph analysis. Hence, it
is a fundamental problem to reason whether one method can invoke another method directly or
transitively. We formulate it as call graph reachability problem as follows.

Definition 3.5. (Call Graph Reachability Problem) Given a project 𝑃 using a set of TPLs L =

{𝐿𝑖 | 1 ≤ 𝑖 ≤ 𝑛} (𝑛 ≥ 1), and a query pair (𝑚𝑠 ,𝑚𝑡) where the source method𝑚𝑠 from 𝑃 , and the
target method𝑚𝑡 from 𝐿, compute the global call graph 𝐺 and determine whether there exists a
path 𝑝 from𝑚𝑠 to𝑚𝑡 in 𝐺 .

To address the reachability query problem on call graphs, a direct approach involves using
online traversal algorithms, such as DFS or BFS algorithm, upon a constructed global call graph.
Algorithm 1 formalizes the call graph reachability analysis via DFS. For each query pair of 𝑚𝑠

and 𝑚𝑡 , it continuously traverses each edge of the global call graph until it finds a path from
𝑚𝑠 to 𝑚𝑡 . However, as the size of the graph increases, there can be substantial time overhead
in the presence of many TPLs. While several caching strategies can help reduce the overhead,
maintaining a global call graph for the entire project is fragile, any change to the version of a TPL
would invalidate the entire cache and require full recomputation. A natural alternative is to cache
the call graph of each TPL separately. However, as shown in our evaluation, this approach still

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

111:10 Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu

Algorithm 1: Reachability Check via DFS

Require: A global call graph 𝐺 = (𝑀, 𝐸)
Require: A source method𝑚𝑠 and a target method𝑚𝑡

Ensure: Whether there exists a path from𝑚𝑠 to𝑚𝑡 in 𝐺
1: function ReachabilityCheck(𝐺,𝑚𝑠 ,𝑚𝑡)
2: visited← [𝑚 ↦→ false |𝑚 ∈ 𝑀]
3: return DFS(𝑚𝑠 ,𝑚𝑡 , visited)

4: function DFS(𝑚,𝑚𝑡 , visited)
5: if 𝑚 =𝑚𝑡 then return true
6: visited[𝑚]← true
7: for each 𝑛 ∈ neighbors(𝑚) do
8: if not visited[𝑛] and DFS(𝑛,𝑚𝑡 , visited)
9: then return true
10: return false

incurs high overhead in IDE settings and is not suitable for interactive, incremental analysis. In
this work, we aim to develop an approach that accelerates call graph reachability analysis while
being resilient to changes in both TPLs and project code. This can directly improve the efficiency
of many downstream clients, including dependency conflict detection and CVE risk detection. In
the next section, we will demonstrate the technical details of our approach ReachCheck, a novel
compositional library-aware call graph reachability analysis that addresses the reachability queries
of method pairs in the IDE.

4 APPROACH: COMPOSITIONAL CALL GRAPH REACHABILITY ANALYSIS
This section presents the technical details of our approach ReachCheck, of which the workflow
is demonstrated in Figure 4. Specifically, ReachCheck consists of three steps. First, we generate
internal call graph summaries for each TPL (Section 4.1). Then, we retrieve the call graph sum-
maries on-demand based on the project and query pairs (Section 4.2). Finally, we introduces an
efficient reachability analysis based on the call graph summaries (Section 4.3). In what follows, we
demonstrate each step in detail.

4.1 Internal Call Graph Summarization
We aim to design a new call graph summary structure that addresses existing limitations, specifically
the inefficiency of current call graph reachability analyses and the inability of indexing approaches
to adapt to changes in the call graph. The overarching idea is pre-computing their reachability
relation as the summaries. When performing reachability queries, we retrieve the pre-computed
summaries on-demand for each TPL, which allow for efficient reachability analysis between any two
methods subsequently. We introduce the concept of internal call graph summary, which formulates
the reachability relations over an internal call graph.

Definition 4.1. (Internal Call Graph Summary) Assume the internal call graph of a project or a
TPL is 𝐺 = (𝑀𝑖 ∪𝑀𝑜 , 𝐸), where 𝑀𝑖 and 𝑀𝑜 are defined in Definition 3.1. Its internal call graph
summary 𝑆 is a pair (𝑆𝑖 , 𝑆𝑜), where
• 𝑆𝑖 ⊆ 𝑀𝑖 ×𝑀𝑖 is a set of inner summaries. (𝑚𝑠 ,𝑚𝑡) ∈ 𝑆𝑖 indicates each method𝑚𝑠 in the current
project or TPL can directly or transitively invoke another method𝑚𝑡 .

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

ReachCheck: Compositional Library-Aware Call Graph Reachability Analysis in the IDEs 111:11

Algorithm 2: Internal Call Graph Summarization
Require: Internal call graph 𝐺
Ensure: Internal call graph summary 𝑆𝑖 and 𝑆𝑜
1: function GenerateSummary(𝐺)
2: (𝐸𝑖 , 𝐸𝑜) ← 𝐺

3: M𝑖 ← ConstructMatrix(𝐸𝑖)
4: M𝑗 ← MatrixMultiplication(M𝑖 ,M𝑖)
5: whileM𝑖 ≠ M𝑗 do
6: M𝑖 ← M𝑗

7: M𝑗 ← MatrixMultiplication(M𝑖 ,M𝑖)
8: 𝑆𝑖 ← RemoveInaccessible(M𝑖)
9: 𝑆𝑜 ← CalcOuterSummary(𝑆𝑖 , 𝐸𝑜)
10: return 𝑆𝑖 , 𝑆𝑜

• 𝑆𝑜 ⊆ 𝑀𝑖 ×𝑀𝑜 is a set of outer summaries. (𝑚𝑠 ,𝑚𝑡) ∈ 𝑆𝑜 indicates each method𝑚𝑠 in the current
project or TPL can directly or transitively invoke the method𝑚𝑡 defined in other TPLs.

Example 4.2. In Figure 2, the method foo_a includes two direct call edges (3 and 5), and we
can compute the indirect call edge 10 introduced transitively via 3 and 4 . Similarly, we can
compute the two edges 9 and 11 . These reachable methods are recorded in foo_a to create a call
graph summary. With this summary, we can quickly ascertain which locations any given method
in𝐺 can reach. For example, method foo_a can directly reach cor_a. Among them, 3 , 5 , and 10
are part of 𝑆𝑖 , while 9 and 11 are part of 𝑆𝑜 .

Intuitively, the internal call graph summary depicts the reachability relation upon the internal
call graph from two aspects. Specifically, an inner summary indicates the reachability relation
between two methods in the project or a TPL, while an outer summary concentrates on whether a
method in the project or a TPL invokes the methods in other TPLs. In the current definition, such
two kinds of reachability relations are decomposed, which facilitates an efficient pre-computation
of the internal call graph summary, which is formulated in Algorithm 2.

Technically, Algorithm 2 computes the internal call graph summary by applying the fast matrix
multiplication technique. First, we extract inner call edges 𝐸𝑖 and outer call edges 𝐸𝑜 from the
internal call graph (line 1). Then, we construct the computation matrixM𝑖 according to the inner
call edges (line 2). Notably, we only concentrate on the inner call edges in constructingM𝑖 because
they sufficiently capture essential connectivity within the internal call graph, thereby minimizing
redundant computations. The outer call edges 𝐸𝑜 that connect to methods in another TPL, such
outer methods are terminal, as they can not invoke any methods in the current project and TPL. As
a result, when computing the TC, we can focus on inner call edges and combine them with outer
call edges to compute the summary for external connections. This approach significantly reduces
the computational overhead involved in deriving the inner summary (lines 4-7). Here, the function
MatrixMultiplication represents the multiplication of the matrix itself, which is achieved by
the fast matrix multiplication. Next, we can eliminate the rowsM𝑖 corresponding to inaccessible
methods from the TC matrix to derive the inner summary 𝑆𝑖 (line 8). Overall, by computing the TC
solely over inner call edges, we significantly reduce the size of the TC matrix, thereby improving
the efficiency of the computation. We call this optimization strategy as call edge refinement.
The impact of this strategy on our algorithm is further discussed in Section 7.1. Notably, preserving
the transitivity of inaccessible methods is unnecessary since these methods will not be invoked by

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

111:12 Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu

Fig. 5. An example of computing the internal call graph summary for TPL A (Green: public methods, Red:
private methods).

other methods outside the current TPL. This optimization reduces the storage space required for the
summary. Building upon the inner summary, we can obtain the outer summary 𝑆𝑜 by concatenating
them with the outer call edges in 𝐸𝑜 (line 9). Compared to directly computing the reachability
relationships across all methods 𝑀𝑖 ∪ 𝑀𝑜 , this approach enables fast matrix multiplication on
smaller matrices, accelerating the analysis and minimizing space overhead.

Example 4.3. In (𝑎) of Figure 5, shown the call graph matrix of the code example TPL𝐴 as shown
in Figure 2. The green functions indicate methods accessible outside the package, such as functions
with a public access modifier. In contrast, the red functions represent methods inaccessible outside
the package, such as functions with a private access modifier. We compute the internal call graph
summary based on this call graph matrix. The black 1 indicates direct call edges and the empty
positions correspond to the absence of a call relationship, represented as 0 in the matrix. First,
we construct an initial matrix according to all inner call edges in 𝐴, for example, in (𝑎) of Figure
5, the (4 × 4) matrix from row foo_a to qux_a and column foo_a to qux_a. We then use matrix
multiplication to compute the final TC matrix. In (𝑏) of Figure 5, the blue 1 represent call edges
obtained through TC computation. To save computational space, we remove three rows of data
from bar_a to qux_a because they are inaccessible from external methods in other TPLs, retaining

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

ReachCheck: Compositional Library-Aware Call Graph Reachability Analysis in the IDEs 111:13

only the (1 × 3) denoted as 𝑆𝑖 , shown in (𝑐) of Figure 5. Subsequently, by combining the outer call
edges, shown in (𝑐) with 𝑆𝑖 , we compute the foo_a to bar_b and foo_c, the blue 1 in (𝑐). Finally,
we remove redundant summary edges, similar to obtain 𝑆𝑖 , to calculate the final 𝑆𝑜 , shown in (𝑑)
of Figure 5.

The decomposition of call graph summaries into 𝑆𝑖 and 𝑆𝑜 effectively mitigates the risk of query
explosion. For each TPL, ReachCheck only needs to answer two kinds of reachability queries. First,
it identifies which internal methods within the TPL are reachable from a given entry method by 𝑆𝑖 .
Second, it determines which external methods are defined in other libraries—can be reached from
the internal methods by 𝑆𝑜 . By separating internal and external reachability into distinct summaries,
ReachCheck avoids the need to enumerate all possible method pairs, significantly reducing the
computational cost. During online reachability queries, we leverage the dependency path (see
Section 4.2) to guide the composition of summaries. When resolving a query to a target method in
a transitive dependency, we intersect the reachable outer methods from the current TPL (𝑆𝑜) with
the entry points of the next TPL along the dependency path. This process significantly reduces the
number of required query pairs by pruning irrelevant call chains early and avoiding redundant
exploration of methods not involved in the reachability path.

It is worth remarking that the internal call graph summary computation is a one-time effort for
a TPL and can be achieved offline. Benefiting from the decomposition of two kinds of summaries
and other optimization techniques, such as the call edge refinement and fast matrix multiplication,
we significantly reduce the complexity of the TC computation, thus inducing low time and space
overheads. Based on the pre-computed internal call graph summaries, we can avoid redundantly
reasoning the call graph reachability when analyzing different projects using the same TPLs.

4.2 Demand-driven Summary Retrieval
As demonstrated in Section 4.1, the internal call graph summaries of the project and its TPLs
support discovering reachable paths within the global call graph. While the internal call graph
summaries can be computed with one-time effort offline, loading all internal call graph summaries
for each reachability query can result in significant overhead due to the large number of TPLs. To
mitigate memory consumption, we propose the concept of a dependency path, which facilitates a
demand-driven retrieval of internal call graph summaries.

Definition 4.4. (Dependency Path) Given a project 𝑃 and a target method 𝑚𝑡 within a TPL,
the dependency path 𝐷𝑝 is defined as an ordered list of packages that represents the traversed
path from project 𝑃 to the TPL that contains the target method𝑚𝑡 . Specifically, a TPL 𝐿 in the
dependency path 𝐷𝑝 has the following two forms:
• 𝐿𝑡 is an intermediate TPL, corresponding to an intermediate node in the dependency path.
• 𝐿𝑒 is a terminal TPL that contains the target method𝑚𝑡 .
To convenience the formulation, we introduce last(𝐷𝑝) to indicate the terminal TPL in the depen-
dency path.

Example 4.5. As shown in Figure 2, assume that𝑚𝑡 is a risky target method bar_c located in
a TPL 𝐶 . Therefore, the dependency path 𝐷𝑝 includes all the TPLs from Proj to 𝐶 , and can be
represented as an ordered list [𝐴,𝐶], where 𝐴 is the intermediate TPL and 𝐶 is the terminal TPL.

Algorithm 3 provides a demand-driven method for retrieving call graph summaries based on a
specified project 𝑃 and query target method𝑚𝑡 . Initially, the algorithm constructs a dependency
tree for 𝑃 (line 3) and uses it to determine the dependency path 𝐷𝑝 (line 4), which links 𝑃 to the TPL
containing𝑚𝑡 . The dependency path 𝐷𝑝 is derived through a backward traversal, starting from the
TPL containing𝑚𝑡 and moving up through its parent nodes until reaching 𝑃 . For each 𝐿 in 𝐷𝑝 , the

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

111:14 Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu

Algorithm 3: Demand-driven Summary Retrieval
Require: Project 𝑃 = {𝐹+, 𝑃∗}, query target method𝑚𝑡

Ensure: Inner call graph summary 𝑆𝑖 for the last(𝐷𝑝)
Ensure: Outer call graph summaries set 𝑆𝑜
1: function GetSummary(𝑃,𝑚𝑡)
2: 𝑇𝑟𝑒𝑒 ← BuildDependencyTree(𝑃)
3: 𝐷𝑝 ← GetDependencyPath(𝑇𝑟𝑒𝑒,𝑚𝑡)
4: for each 𝐿 ∈ 𝐷𝑝 do
5: if 𝐿 == last(𝐷𝑝) then
6: 𝑆𝑖 ← GetInnerSummary(𝐿)
7: else
8: 𝑆𝑜 ← 𝑆𝑜 ∪ GetOuterSummary(𝐿)
9: end if
10: end for
11: return 𝑆𝑖 and 𝑆𝑜

algorithm checks if it is the last node in the dependency path, indicating that it contains𝑚𝑡 . If it
is, the algorithm retrieves the inner call graph summary 𝑆𝑖 for 𝐿 (lines 6-7). Otherwise, it fetches
the outer call graph summary 𝑆𝑜 , which records reachable external methods (lines 7-8). Selecting
specific summaries based on the position of TPL in the dependency path 𝐷𝑝 can effectively reduce
the summary size needed for reachability queries, thereby improving query efficiency. We call
this optimization strategy on-demand sub-summary retrieval. The impact of this strategy on
our algorithm is further discussed in Section 7.2. The final output includes 𝑆𝑖 and 𝑆𝑜 for TPLs on
the dependency path (line 10). This selective retrieval method reduces memory usage by loading
only the necessary summaries based on 𝐷𝑝 , thus optimizing reachability queries.

Example 4.6. For the query pair (foo, bar_c) shown in Figure 2, the TPL dependency path is
identified as [𝐴,𝐶], following the backward traversal as outlined in Definition 4.4. In this path, 𝐴 is
classified as the transit node 𝐿𝑡 , while 𝐶 is the terminal node 𝐿𝑒 since it contains the target method
bar_c. To resolve this query, we selectively retrieve specific summary matrices for each TPL along
the dependency path. For node𝐴, we use the outer summary matrix 𝑆𝑜 to identify methods in other
TPLs that are reachable from methods within 𝐴. Specifically, edges 9 and 11 are included in 𝑆𝑜 ,
indicating that foo_a in 𝐴 can reach methods outside of 𝐴 via these edges. The remaining edges
within 𝐴 are excluded from 𝑆𝑜 , as they are irrelevant to this particular reachability query. For𝐶 , we
utilize the inner summary matrix 𝑆𝑖 , which encapsulates the internal reachability among methods
within𝐶 . This matrix allows us to verify reachability from foo_c to bar_c specifically, represented
by edge 8 in 𝑆𝑖 . By focusing solely on these specific summary matrices 𝑆𝑜 for 𝐴 and 𝑆𝑖 for 𝐶 , we
optimize the query process by minimizing the amount of data retrieved and processed.

In this step, we optimize the retrieval of call graph summaries by constructing a dependency
path and retrieving summaries based on the position of TPL nodes in this path. This selective
retrieval reduces memory usage and computational overhead, optimizing the reachability analysis
by focusing only on the necessary summaries.

4.3 Reachability Analysis
As demonstrated in Section 4.2, we obtain the project’s 𝐷𝑝 based on the target TPL with𝑚𝑡 and
then demand-driven retrieve relevant summary along this path. The summaries primarily include

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

ReachCheck: Compositional Library-Aware Call Graph Reachability Analysis in the IDEs 111:15

Algorithm 4: Reachability Analysis
Require: Query pair (𝑚𝑠 ,𝑚𝑡), dependency tree path 𝐷𝑝

Require: Call graph summaries 𝑆𝑖 and 𝑆𝑜
Ensure: Whether𝑚𝑡 is reachable from𝑚𝑠

1: function ReachAnalysis(𝑚𝑠 ,𝑚𝑡 , 𝐷𝑝 , 𝑆𝑖 , 𝑆𝑜)
2: 𝑀𝑆 ← {𝑚𝑠 }
3: for each 𝐿 ∈ 𝐷𝑝 do
4: if 𝐿 ≠ last(𝐷𝑝) then
5: 𝑀𝑆 ← CalcNextReach(𝑀𝑆 , 𝑆𝑜 , 𝐿)
6: else
7: return CanReach(𝑀𝑆 ,𝑚𝑡 , 𝑆𝑖)
8: end if
9: end for
10: return 𝐹𝑎𝑙𝑠𝑒

the 𝑆𝑖 of the last dependency node in the path and the 𝑆𝑜 of all other nodes along the path. We
can quickly and efficiently determine API reachability with these summaries while minimizing the
amount of summaries used.

To determine if a target method𝑚𝑡 is reachable from a source method𝑚𝑠 , we employ Algorithm
4. This approach leverages dependency path 𝐷𝑝 and precomputed call graph summaries 𝑆𝑖 and 𝑆𝑜
to efficiently assess reachability. The process begins by initializing𝑀𝑆 = {𝑚𝑠 } (line 2), where𝑀𝑆

represents the set of methods that are reachable from𝑚𝑠 as the algorithm progresses. This set𝑀𝑆 is
updated iteratively as each 𝐿 in 𝐷𝑝 is processed, expanding to include methods that can be accessed
from𝑚𝑠 by traversing through intermediate methods (lines 3-9). Specifically, if the 𝐿 is not the last
one in the dependency path, we then utilize the CalcNextReach function to compute the set of
methods reachable from𝑀𝑆 using 𝑆𝑜 , updating𝑀𝑆 to recollect this new set of reachable methods
(lines 4-5). Specifically, in the CalcNextReach function, we select the outer call graph summary
corresponding to the 𝐿 in the set of outer call graph summaries 𝑆𝑜 for computation. Otherwise,
the algorithm utilizes CanReach to verify if𝑚𝑡 lies within the reach of 𝑀𝑆 in 𝑆𝑖 (lines 6-7). This
selective updating process optimizes reachability analysis by limiting computations to necessary
summaries.

Example 4.7. In Figure 2, consider bar_c as a risky target method𝑚𝑡 . Then, consider foo as a
source method𝑚𝑠 in Proj. The 𝐷𝑝 is [𝐴,𝐶]. The first TPL in the 𝐷𝑝 is 𝐴, which is 𝐿𝑡 . Thus, we use
its 𝑆𝑜 in (𝑑) in Figure 5. Based on the analysis of the Proj, foo can reach to foo_a, while 𝑏𝑎𝑟 does
not call any methods in A. We combine𝑀𝑆 with 𝑆𝑜 , resulting in an updated𝑀𝑆 that includes the
methods bar_b and foo_c to be propagated to the next node. The next TPL,𝐶 , is 𝐿𝑒 , so we retrieve
its 𝑆𝑖 . Combining𝑀𝑆 with 𝑆𝑖 , we ultimately reach the risky method bar_c. Thus, we conclude that
it is possible to call the risky method bar_c from foo in Proj.

In summary, the reachability analysis effectively leverages precomputed call graph summaries
to expedite node reachability determination. Our approach minimizes computational overhead and
enhances query efficiency by utilizing summaries along the dependency path, enabling faster, more
efficient reachability queries.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

111:16 Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu

5 APPLICATIONS AND IMPLEMENTATION
This section presents two applications of reachability detection and provides the implementation
details.

5.1 Applications of Call Graph Reachability Analysis
To demonstrate the capability of ReachCheck, we implemented two core applications: dependency
conflict detection and CVE risk detection (See Section 2.2). Both applications are based on identifying
risk methods. Once identified, ReachCheck can perform a reachability analysis to assess the
reachability of these methods. For dependency conflict detection, we identify risks by comparing
the lists of accessible methods between two library versions, highlighting any accessible method
differences. Variations in the accessible method lists of the TPL between the two versions are treated
as risk methods that require attention. For CVE risk detection, we establish a CVE vulnerability
database focusing on Java TPLs. The database mainly includes CVE risks and the range of versions
of libraries affected by specific risk methods. We obtain CVE risk data from public vulnerability
database Snyk [3], a widely used security database that tracks and identifies vulnerabilities in
open-source dependencies. We then filter risk-related methods based on GitHub commits associated
with risk fixes, flagging them as target risk methods for detection.

5.2 Implementation
We conduct the internal call graph summarization analysis offline on the server. We apply a call
graph analysis algorithm (e.g., Class Hierarchy Analysis (CHA) or Variable Type Analysis (VTA))
to analyze each TPL’s bytecode, extracting method signatures and call edges from public methods
which are treated as entry points of call graph analysis. Subsequently, we generate the internal call
graph summary of TPL using cuBool [44, 48] via matrix multiplication, enhanced by GPU parallel
computing for efficiency. To improve preprocessing efficiency, we utilize GPU parallelism during
this one-time offline summarization phase. Note that GPU acceleration is only applied at this stage.
The actual reachability queries can be executed on the CPU, and the performance improvements
primarily stem from the summary-based design rather than hardware optimization. The summary
is then stored in a central repository similar to the Maven repository to facilitate user access.
To support incremental updates and avoid recomputing summaries when a TPL is updated,

ReachCheck incorporates a mechanism for efficiently handling newly introduced subclasses. Up-
dating a TPL version or adding a new TPL may introduce new subclasses, which in turn can result
in additional virtual calls to existing call sites. To address this without requiring full recomputation,
ReachCheck records call edges from downstream libraries to interface types and abstract classes
during summary construction. When new subclasses are introduced, ReachCheck consults the
recorded type usage information to identify affected call sites and triggers an on-demand reachabil-
ity query starting from the newly introduced virtual call edge. In this process, we conservatively use
the CHA algorithm for call graph analysis to add new call edges during query time. This algorithm
is independent of the call graph algorithm used during the initial summary construction.This
mechanism enables ReachCheck to preserve the efficiency of summary reuse.

To support the analysis of callback, ReachCheck adopts an incremental query strategy. Specifically,
when a TPL invokes a callback method which is defined in the client project, we treat this as a
new reachability query initiated from the client project method to the target methods. Since each
individual query is executed very efficiently, these small incremental queries introduce negligible
time overhead.
Our approach enables simultaneous querying of the reachability of all target methods within

a given TPL. By leveraging a matrix model, our approach supports inputting query pairs as sets,

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

ReachCheck: Compositional Library-Aware Call Graph Reachability Analysis in the IDEs 111:17

where𝑀𝑆 represents all methods𝑚𝑠 in the project Proj, and𝑀𝑇 denotes the target methods𝑚𝑡 for
querying within the TPL. This structure allows our approach to efficiently determine reachability
between the sets𝑀𝑆 and𝑀𝑇 by utilizing call graph summaries, significantly reducing query time.
For example, in the case shown in Figure 2, we can group all methods in Proj, such as 𝑓 𝑜𝑜 and 𝑏𝑎𝑟 ,
into the set𝑀𝑆 , while𝑀𝑇 would consist of 𝑓 𝑜𝑜_𝑐 and 𝑏𝑎𝑟_𝑐 as target methods. By executing the
reachability query algorithm once, we can quickly determine which methods in TPL𝐶 are reachable
from Proj. This approach avoids generating all possible query pairs (𝑓 𝑜𝑜 → 𝑏𝑎𝑟_𝑐 , 𝑏𝑎𝑟 → 𝑏𝑎𝑟_𝑐 ,
et. al), thereby reducing redundant computations. This allows us to assess the reachability of risky
methods more efficiently.

6 EVALUATION
In this section, we evaluate the efficacy of ReachCheck by answering the following research
questions.
• RQ1: How efficiently does ReachCheck perform in querying call graph reachability?
• RQ2: Can ReachCheck outperform state-of-the-art other reachability approaches in terms of
query time efficiency?
• RQ3: Can ReachCheck assist in dependency conflict detection and CVE risk detection to meet
the IDEs’ requirements?

6.1 Experimental Setup
Dataset. To address RQ1 and RQ2, we constructed a dataset of API pairs for call graph reachability
queries with the following steps. First, we randomly selected 100 widely-used and well-known
Maven projects from GitHub, where their source code and their dependent TPLs are all available.
The selected projects have at least 50 stars, forks, update frequently. For each project, we leveraged
Maven to download all TPLs it depends on. Our evaluation setting is designed to simulate the
interactive development scenario in IDEs, where a developer introduces a new call (e.g., writes a line
of code), which immediately triggers a reachability query. In such cases, queries are independent
and arrive one at a time. Then, we randomly sampled 2.5 million reachability queries (𝑚𝑠 ,𝑚𝑡)
for each project, where each 𝑚𝑠 ∈ 𝑀𝑆 belongs to the project and each 𝑚𝑡 ∈ 𝑀𝑇 is part of the
project’s TPLs. For simplicity, we refer to this dataset as ReachBench[24]. The maximum number
of dependencies of these projects is up to 224, and the average is 71, including direct and indirect
dependencies, ensuring a diverse and representative sample.
Baselines. We compare ReachCheck with three baselines. It should be noted that the source code
for these approaches is open-source, and we use their configurations that are used as the best in
the paper for comparison.
• Online traversal (OT) approach: It is an approach that builds the call graph of the project and
the required TPLs and leverages BFS/DFS traversal algorithm to answer the call graph reachability
query, which has been widely used in existing approaches, e.g., Decca [67] and Riddle [68].
• Function summary (FS) approach: It is an approach that pre-analyzes and caches call graphs
of the required TPLs offline and and leverages BFS/DFS traversal algorithm to answer the call
graph reachability query [43]. Due to the pre-analysis, it can save the analysis time of online
building call graph compared with the OT approach.
• Graph indexing approaches: They are the approaches that build graph index for the required
TPLs and leverage a graph index to answer the call graph reachability queries. There are three
categories of graph indexing approaches, including tree-cover [26], 2-hop labeling [32], and
approximate TC [71, 80]. We compared ReachCheck with the state-of-the-art techniques of these
three categories, namely Ferrari [56], BL [78], and BFL [61].

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

111:18 Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu

Fig. 6. The execution time of ReachCheck.

It should be noted that, in our experiment, we verify the answers to call graph reachability
queries among all the aforementioned approaches are consistent, so as to ensure the correctness of
the implementations for ReachCheck and all the baselines. For any inconsistency, we identify the
implementation issues and fix them until they produce consistent results.

Environment. Our experiments were conducted in two separate environments to reflect realistic
usage settings and ensure fair evaluation:

• Summary Generation. The one-time offline summary generation phase, which includes
matrix-based TC computation, was performed on an NVIDIA RTX A6000 GPU (48GB VRAM)
running Ubuntu 22.04.1 LTS. The GPU was used exclusively for accelerating matrix compu-
tations during summary construction, and was not involved in query execution.
• Reachability Query. To reflect realistic IDE scenarios, all reachability queries and baseline
comparisons were conducted on a local workstation equipped with an 8-core “11th Gen
Intel(R) Core(TM) i7-11700@2.50GHz” processor and 64GB of RAM. All experiments were
executed on a single thread without any parallelism.

6.2 Efficiency
To evaluate the efficiency of ReachCheck, we measure its execution time of answering the queries
in the dataset ReachBench. Figure 6 shows the execution time by ReachCheck for answering all
reachability queries across 100 Maven projects. Across all projects in the dataset, ReachCheck
required an average of 105.17 ms to complete the reachability queries per project. For example,
in the project PGM that requires the longest query time, ReachCheck completes all 2.5 million
queries in just 460.81 milliseconds. This performance indicates that ReachCheck can process over
5.43 million reachability queries per second, demonstrating its ability to meet the performance
requirements of various analysis tasks in an IDE environment. Consider the two applications
described in this work. First, the dependency conflict detection shown in Table 2 involves no more
than 62,098 reachability queries. Second, for CVE risk detection, even with 1,000 call sites as sources
and 1,000 known vulnerable methods as targets, the analysis would require only 1 million queries.
Given these numbers, ReachCheck is fully capable of handling both tasks efficiently within an
IDE’s performance constraints.

Answer to RQ1: ReachCheck efficiently answers 2.5 million call graph reachability queries
per project, with an average time cost of 105.17 ms, in line with the performance requirements
expected within IDEs.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

ReachCheck: Compositional Library-Aware Call Graph Reachability Analysis in the IDEs 111:19

Fig. 7. The speedup compare to other approaches.

6.3 Comparison with baselines
We compared ReachCheck with the three categories of the representative baselines as discussed in
Section 6.1, namely the online traversal approach, function summary approach, and graph indexing
approaches. Figure 7 illustrates the speedup of our approach over the other baselines.
Compared to the online traversal approach, our approach ReachCheck achieved a speedup of

237.75× on average. Specifically, our approach achieves far more significant speedups in large-scale
projects than smaller ones. For example, in large-scale projects like IoT-Technical and line-login,
with call edges ranging from 2,513,225 to 5,172,866, ReachCheck achieves speedups of 289.03× and
201.77×, respectively. In contrast, for smaller projects such as ymate-platform-v2 and perwendel-
spark, which have call edges ranging from 37,309 to 43,833, the speedups are 93.87× and 110.82×.
The function summary approach is essentially more efficient than the online traversal approach,
since it reduce the time cost of online computing call graphs of TPLs. Even so, our approach is still
more efficient than the function summary approaches, with the average speedup of 78.55×. The
result is not surprising, because ReachCheck not only saves the time of computing call graph but
also leverages TC summaries to speed up the reachability queries.
Compared to the three representative graph indexing approaches, i.e., Ferrari, BL and BFL,

respectively, ReachCheck achieves average speedups of 84.86×, 4, 369.09× and 80.91× in Reach-
Bench [24]. The primary reason for this substantial improvement is that ReachCheck leverages
pre-built call graph summaries for each TPL, enabling efficient demand-driven combination and
support for fast reachability queries. Compared to ReachCheck, existing graph indexing approaches
incur substantial overhead due to the need to construct a complete call graph index by merging
the call graphs of all TPLs. In our evaluation, the baseline methods report the total analysis time,
which includes two parts. The first part is the time required to merge all TPL call graphs into a
complete call graph. The second part is the time spent performing reachability queries. Even when
comparing only the reachability query phase, ReachCheck still achieves substantial performance
gains. Specifically, it outperforms the baseline indexing methods with speedups of 8.41× over
Ferrari,4, 292.64× over BL, and 4.46× over BFL, respectively. The BL graph indexing approach
performs the worst due to its design, which assumes to work efficiently on sparse graphs with
an expected average degree of less than 2 [78]. However, such assumption does not hold in the

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

111:20 Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu

Fig. 8. The effects of call edges refinement.

scenario of call graphs. For example, in the projects of ReachBench, the average degree is 5.13, which
breaks the assumption of of the BL graph indexing approach and thus undermines its efficiency.

Answer to RQ2: ReachCheck significantly outperforms the state-of-the-art reachability
approaches in terms of query time efficiency, achieving speedups of up to 78.55× compared
to the fastest baseline and demonstrating its strong potential for accelerating detection tools
to meet the IDE requirement.

6.4 Usefulness
We evaluated the usefulness of ReachCheck using two downstream tasks: dependency conflict
detection and CVE risk detection. To ease the explanation, we named the tools implemented based
on ReachCheck for dependency conflict detection and CVE risk detection as DepConDetect and
CVERiskDetect, respectively.
Dependency conflict detection: We reproduced the Maven projects in the issues reports from
the paper [67, 68]. To better understand the efficiency of DepConDetect, we used Decca, which
is essentially based on the online traversal approach, for the comparison. The evaluation results
indicate that DepConDetect can reduce the average detection time for each reported issue from
327.93 seconds to 0.61 seconds when detecting the same issue. To facilitate the reproduction, we
have published the data and the evaluation results online [6]. This demonstrates that ReachCheck
can effectively accelerate dependency conflict detection tasks, thereby meeting the requirements of
the IDE environment.
CVE risk detection: We utilized CVERiskDetect to detect Maven projects in ReachBench with
the following steps. First, we retrieved the methods that are associated with CVEs, namely CVE
methods, from our constructed CVE database in Section 5.1. For each Maven project, we checked
whether it uses any risky TPL which contains the CVE by matching the TPL name and version
with the records in the CVE database. If matching, we extracted the CVE methods contained in
the risky TPL as𝑀𝑇 . Finally, we leveraged CVERiskDetect to determine whether𝑀𝑇 are reachable
from any method in the project. Eventually, we submitted 43 bug reports as shown in Table 3[5].
All of the bug reports have been confirmed, and 40 of them have been fixed.

To better understand the efficiency of CVERiskDetect, we implemented a baseline CVE detection
tool based on online traversal approach, namely, CVERiskDetect_OT. The results demonstrated
that, comparing with CVERiskDetect_OT, CVERiskDetect significantly reduced the detection time
from 181.66 seconds to 0.35 seconds. This showcases the significant potential of CVERiskDetect in
accelerating existing detection tools, thereby meeting the requirements of the IDE environment.

Answer to RQ3: ReachCheck can significantly improve the efficiency of the two client
analyses of call graph reachability analysis, dependency conflict detection and CVE risk
detection, demonstrating its potential in the applications within IDE environments.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

ReachCheck: Compositional Library-Aware Call Graph Reachability Analysis in the IDEs 111:21

Table 3. Github projects which invoke vulnerable APIs

Project Name Bug ID Stars/Forks CVE ID Status
apollo #4755 28.1k/10.1k 2022-25857 Confirmed
hutool #2999 26.4k/7.1k 2022-25857 Fixed

openapi-generator #15195 16.6k/5.3k 2018-12537 Fixed
sofa-jraft #960 3.2k/1k 2022-25857 Fixed

webcam-capture #879 2.1k/1.1k 2020-13956 Fixed
inlong #7480 1.2k/420 2019-17563 Fixed
datagear #23 931/275 2022-31692 Fixed

rsocket-broker #220 722/156 2022-25857 Fixed
mendmix #17 664/289 2022-25857 Fixed

wcm-components #2358 648/699 2020-9484 Fixed
jinjava #1049 601/151 2022-25857 Confirmed
infinitest #351 572/152 2020-15250 Fixed

Web-Karma #573 557/196 2020-13956 Fixed
vertx #95 544/191 2019-17640 Confirmed

query-federation #829 498/258 2020-13956 Fixed
congomall #18 442/55 2022-25857 Fixed
camellia #98 356/90 2018-1000873 Fixed

core-geonetwork #6759 354/452 2020-13956 Fixed
NCM2MP3 #9 278/54 2022-25845 Fixed

OpenAudioMc #306 267/90 2022-25857 Fixed
rumble #1226 194/78 2022-25857 Fixed
h2gis #1338 191/65 2022-21724 Fixed
h2gis #1338 191/65 2022-26520 Fixed

JedAIToolkit #63 191/39 2020-13956 Fixed
ruoyi #1 176/35 2021-36090 Fixed
scblogs #169 169/50 2022-25857 Fixed

FastBeeIM #2 141/39 2022-25857 Fixed
rocketmq-connect #434 90/99 2022-25845 Fixed

BlackLab #419 85/51 2022-25857 Fixed
Stitching #70 83/61 2022-25857 Fixed
kungfu #2 81/61 2022-25845 Fixed

californium.tools #86 59/56 2017-7656 Fixed
jdcloud-sdk-java #274 37/41 2020-13956 Fixed

alcor #760 29/34 2020-13956 Fixed
helidon-build-tools #850 29/34 2020-13956 Fixed

unix-monitor #55 27/18 2020-13956 Fixed
hugegraph-commons #109 26/37 2020-15250 Fixed

gestionmateriel #39 23/38 2022-25857 Fixed
basyx-java-sdk #276 22/27 2021-36090 Fixed

elasticjob #2153 7.9k/3.3k 2020-13956 Fixed
error-prone #3835 6.5k/746 2022-25857 Fixed
MoonBox #27 769/126 2022-22970 Fixed
restx #339 440/80 2017-12615 Fixed

7 DISCUSSION
7.1 Impact of Call Edges Refinement
The call edge refinement optimization strategy within TPL call graphs in our approach (See
Section 4.1) significantly enhances computational efficiency. This strategy involves selectively
computing only the necessary call edges, starting with internal call graphs and subsequently
updating summaries for outer call edges. Such selective computation drastically cuts down on

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

111:22 Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu

Fig. 9. The total storage usage for analyzing all projects.

unnecessary processing, thereby accelerating overall execution times and improving the system’s
capacity to handle large datasets efficiently. Figure 8 demonstrates the effectiveness of this approach,
showing that after implementing call edge refinement, the average execution time for the TC
algorithm on the GPU decreased significantly by 79.07%. This substantial reduction underscores
the effectiveness of the strategy in optimizing the performance and resource utilization.

7.2 Impact of Demand-driven Summary Retrieval
The strategy of demand-driven summary retrieval is designed to streamline the querying process
by simplifying data retrieval for TPLs. We can compute the call edges between the intermediate
node 𝐿𝑡 ⊆ 𝐷𝑝 and the TPLs it depends on using only the outer call graph summary 𝑆𝑜 . This method
enables us to omit the call edges of its inner methods, resulting in significant space savings. Figure
9 shows that after demand-driven summary retrieving, the total storage needed was reduced by
55.82%, demonstrating substantial efficiency gains in large-scale systems.

7.3 Time and Space Cost of Summary Computation
The computation of the TC typically requires substantial processing time. To optimize this, we
leverage GPUs for fast matrix multiplication. Specifically, we use cuBool [44] on the GPU, which
reduces the TC computation time to the millisecond range. Our experiments show that generating
summaries for each TPL used in the ReachBench projects takes an average of only 23.76 ms. The
summary construction is designed as an offline preprocessing step and is efficiently accelerated
using GPU computation, making it practical even at scale. On average, it consumes only around
272.72 MB of GPU memory per TPL, which indicates a low GPU memory overhead. For example,
the popular TPL httpclient-4.5.1, which includes 11,632 direct call edges and 4,616 methods,
has its TC computed in just 9.6 ms using 271.56 MB of GPU memory. This efficiency enables us to
precompute the TC of all Maven TPLs offline on the server. The client plugin can then retrieve and
reuse these precomputed results for rapid reachability analysis, significantly accelerating detection.
In terms of space, the optimizations in the summary structure have reduced the storage re-

quirement for each TPL’s summary to just 1.81% of the original TPL binary file. For example, the
summary for the TPL httpclient-4.5.1 occupies only 3.65% of the original JAR file size. This
low storage cost makes it feasible to deploy these summaries alongside TPLs in Maven repositories
in the future. IDEs can then download and use these summaries directly, enabling efficient call
graph reachability queries.

7.4 Impact of Call Graph Construction Algorithms
To assess whether the effectiveness of ReachCheck is influenced by the choice of call graph con-
struction algorithms, we conducted an additional experiment using VTA, a more precise algorithm

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

ReachCheck: Compositional Library-Aware Call Graph Reachability Analysis in the IDEs 111:23

Fig. 10. The speedup compare to other approaches (VTA call graph).

supported by Soot. Compared to the CHA based construction used in our main experiments, VTA
performs more refined resolution of dynamic dispatch, resulting in more precise call graphs.
After regenerating the call graphs for all benchmark projects using VTA, we observed that

the average degree decreased from 5.13 to 3.80, indicating a 25.9% reduction in graph density. To
verify whether ReachCheck’s performance advantage holds under this new setting, we re-evaluated
ReachCheck and all baseline techniques using the VTA-generated call graphs, following the same
experimental setup as described in Section 6.3. We measured only the query execution time for all
baselines. The results show that ReachCheck continues to significantly outperform all baselines.
Specifically, as shown in Figure 10, when using the VTA-based call graph, ReachCheck achieves a
speedup of 3, 711.25× over the OT approach, 44.04× over the FS approach, 8.30× over the Ferrari,
4, 580.52× over the BL and 5.73× over the BFL. Meanwhile, as shown in Figure 7, when using the
CHA-based call graph, ReachCheck achieves a speedup of 237.75× over the OT approach, 78.55×
over the FS approach, 84.86× over Ferrari, 4, 369.09× over BL, and 80.91× over BFL. The results
show that adopting more precise call graph construction algorithms also can improve the query
performance of ReachCheck.

7.5 Threats to Validity
The validity of our method hinges on environmental factors affecting computational efficiency. We
mitigated this by conducting evaluations on a dedicated server, free from user interference and we
repeated experiments to counteract caching effects. This ensured controlled conditions for reliable
comparative analysis.

7.6 Limitations and Future Work
The limitations of static call graph analysis may affect the effectiveness of ReachCheck. In particular,
language features such as Java reflection and other dynamic behaviors may lead to the unsoundness
in static call graph construction, potentially missing actual call edges at runtime [62]. Recent
research has proposed advanced techniques to improve soundness under such conditions [46, 57, 58].
These advancements are orthogonal to ReachCheck and can enhance the quality of underlying call
graphs, thereby improving the effectiveness of downstream tasks such as vulnerability detection.
While our current implementation uses CHA-based call graphs, Section 7.4 shows that adopting
more precise algorithms such as VTA can result in sparser graphs and improve the performance.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

111:24 Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu

This illustrates that ReachCheck can naturally benefit from the improvements in static call graph
construction while remaining agnostic to the specific algorithm used. As shown in Section 7.4,
using the VTA algorithm reduces the average call graph sparsity from 5.13 to 3.80, which directly
benefits our summary construction. For instance, in the case of the library httpclient-4.5.1, the
construction time decreased from 9.6 ms to 8.6 ms, representing an improvement of approximately
10.42%. This demonstrates that higher call graph precision can lead to more efficient offline summary
construction. With ongoing advancements in static analysis (e.g., class hierarchy analysis, rapid
type analysis, and variable type analysis [10, 59]), both the soundness and precision of call edge
construction are expected to improve, which will further enhance the efficiency and effectiveness
of ReachCheck.
In future work, we plan to extend ReachCheck’s summarization strategy beyond TPLs to also

include stable parts of the application code, such as unchanged classes or packages. This extension
would enable finer-grained incremental analysis within the IDE by avoiding redundant reanalysis
of code that has not been modified.

8 RELATEDWORK
8.1 Risk Detection in Ecosystem
Modern software development increasingly relies on TPLs, which are often vulnerable to various
security threats [73]. Recent studies have thoroughly investigated these vulnerabilities across
prominent software ecosystems like Java, JavaScript, and Python[39, 64, 82, 83]. Particularly,
Wang et al.[67–69] proposed a tool to detect whether there are methods in the project that cause
exceptions at runtime. These tools utilize online traversal algorithms for reachability analysis to
identify risky method invocations within ecosystems. However, the significant time costs of online
traversal algorithms constrain their utility in practical applications. Our approach accelerates the
computational process by operating orthogonally to existing methods, offering a more efficient
solution for call graph reachability analysis.

8.2 IDE Detection Plugin
IDEs encompass a broad range of functionalities that significantly streamline developer tasks.
Technologies like ECHO [79] and D4 [45] enhance IDE capabilities by optimizing error detection
processes. ECHO optimizes perceptual analysis to distribute the analysis cost and avoid redundant
computations, enabling it to detect vulnerabilities at the IDE level with increased speed. Concur-
rently, D4 achieves rapid error detection, effectively identifying issues within 100 milliseconds
post-code modifications. This rapid detection is critical as it aligns with the time-sensitive require-
ments of modern development environments where long execution times can disrupt workflows
and reduce the adoption rate of tools [34].
The design of our detection approach was initially motivated by the specific needs of IDE

scenarios, aiming to seamlessly integrate with and enhance existing IDE detection capabilities.
Experimental results confirm that our technology not only complements but also accelerates the
performance of traditional IDE detection tools, providing developers with immediate feedback and
significantly reducing the downtime associated with error correction.

8.3 Reachability Indices
Graph reachability queries, crucial for establishing if nodes within a graph can reach each other,
are commonly processed using methods like DFS, BFS, or Arrow [55]. With the challenges posed
by large graphs, several indexing methods have been developed to enhance query efficiency. These
methods can be broadly categorized into three types: Tree-Cover Index [26, 30, 40, 56, 63, 65, 76, 77],

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

ReachCheck: Compositional Library-Aware Call Graph Reachability Analysis in the IDEs 111:25

2-Hop Labeling Method [28, 29, 31, 32, 36, 41, 42, 47, 53, 75, 78, 84], and Approximate TC [61, 70, 71].
Tree-Cover Index assigns intervals [𝑎𝑣 , 𝑏𝑣] to nodes, leveraging the spanning tree’s structure
to ascertain reachability [26]. It ensures comprehensive coverage by incorporating necessary
adjustments for non-spreading edges. 2-Hop Labeling Method assigns two distinct label sets to
each vertex, one representing vertices that are reachable from it and the other for vertices that can
reach it, offering efficiency despite the NP-hard nature of constructing an optimal 2-hop index [32].
Approximate TC method reduces the size of the reachability set by applying a function, which
transforms the set of reachable vertices from a given vertex into a smaller subset while ensuring
no false negatives [71]. Special methods like DAGGER [77], IP [71], and DBL [47] provide dynamic
index updates, though their speeds may not surpass traditional BFS [81].

Unlike graph index methods like the Tree-Cover Index, our approach utilizes an offline TC Index.
This index pre-stores reachability information, eliminating the need for runtime recalculations.
Particularly effective in static environments with infrequent graph updates, the offline TC Index
offers immediate query responses and reduces overhead, ideal for use in IDEs where stability and
efficiency are crucial.

8.4 Function Summaries in Compositional Analysis
Function summaries are widely used for caching the results of the compositional analysis. Various
kinds of function summaries are designed to cope with different analyses. For example, function
summaries in IFDS [52] and interprocedural distributive environment [60] frameworks are used
for data-flow analysis. Arzt et al. [27] proposed flow-sensitive function summaries to support the
taint analysis in Android. Wu et al. [72] design a two-layer function summaries to achieve path-
sensitive analysis for detecting memory errors. Since the demands of the aforementioned client
analysis are different, their function summaries are not feasible for tackling call graph reachability
analysis. The most relevant work to our research goal [43] used the pre-analyzed call graph as
function summaries. However, due to the high time cost of online graph traversal, such function
summaries are still unsatisfactory in the context of IDEs. Our proposed summary is different from
the function summaries designed in prior study [43]. Specifically, our summary compactly encodes
the reachability relation among APIs in a TPL and supports accelerating call graph reachability
queries without online BFS or DFS graph traversal.

A closely related approach is presented by Schubert et al. [54], who compress control-flow graphs
of individual programs to persist and reuse static analysis results, aiming to reduce recomputation
overhead in traditional analysis pipelines. In contrast, our goal is to enable fast reachability queries
within IDEs by significantly reducing the need for online graph traversals. ModAlyzer generates
summaries that capture a broad range of control-flow features and therefore require more storage. In
comparison, we precompute lightweight summaries for TPLs that compactly encode only call graph
reachability between exported APIs. This focused and compact design makes our approach more
suitable for interactive IDE environments, where low latency are critical. Meanwhile, Hejderup
et al. [37, 38] construct versioned, ecosystem-wide call graphs across centralized repositories
(e.g., Maven, NPM), supporting large-scale vulnerability propagation studies. Our work, however,
targets project-specific, real-time analysis scenarios where developers frequently add or upgrade
dependencies. Rather than building a global database, we generate modular summaries for each
TPL, which can be dynamically composed at query time to reflect the current dependency state.

9 CONCLUSION
Call graph reachability analysis is a widely utilized technique in vulnerability detection, but the
long detection times of existing accessibility analysis tools have limited their use in IDEs. This paper
introduces ReachCheck, a novel compositional library-aware call graph reachability analysis that

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

111:26 Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu

addresses the reachability queries of method pairs in the IDE. Experimental results demonstrate
that ReachCheck efficiently constructs call graphs on-demand for TPLs, achieving an impressive
average query time of just 105.17 ms per project. These advancements significantly enhance
the overall efficiency of vulnerability detection in software projects and facilitate the practical
application of detection tools within IDE environments. The source code of ReachCheck is available
at https://github.com/ReachCheck/ReachCheck.

ACKNOWLEDGEMENT
We sincerely thank the anonymous reviewers for their valuable and insightful feedback. We also
extend our gratitude to Qiao Xiang for his constructive suggestions on the manuscript. This research
was supported by the National Key R&D Program of China (2022YFB2901502), the Natural Science
Foundation of China (Grant No. 62272400), Fujian Provincial Natural Science Foundation of China
(Grant No. 2025J010002), and the Leadingedge Technology Program of Jiangsu Natural Science
Foundation (BK20202001). Rongxin Wu is the corresponding author and works as a member of
Xiamen Key Laboratory of Intelligent Storage and Computing in Xiamen University.

REFERENCES
[1] 2018. Issue309. https://github.com/ff4j/ff4j/issues/309
[2] 2023. Dependency Analyzer. https://www.jetbrains.com/guide/java/tutorials/analyzing-dependencies/dependency-

analyzer/
[3] 2023. Snyk. https://security.snyk.io/
[4] 2023. SootUp. https://github.com/soot-oss/SootUp
[5] 2024. CVE Reports. https://github.com/ReachCheck/ReachCheck/blob/main/reportData/CVE_reports.md
[6] 2024. DC Reports. https://github.com/ReachCheck/ReachCheck/blob/main/reportData/DC_reports.md
[7] 2024. IDEA. https://www.jetbrains.com/idea/
[8] 2024. Vulnerability Checker. https://www.jetbrains.com/help/idea/package-analysis.html
[9] 2025. BEAM-3690. https://issues.apache.org/jira/browse/BEAM-3690
[10] 2025. call-graph-construction. https://soot-oss.github.io/SootUp/v1.1.2/call-graph-construction/
[11] 2025. ff4j. https://github.com/ff4j/ff4j
[12] 2025. HADOOP-15261. https://issues.apache.org/jira/browse/HADOOP-15261
[13] 2025. Issue1371. https://github.com/locationtech/geowave/issues/1371
[14] 2025. Issue146. https://github.com/st-js/st-js/issues/146
[15] 2025. Issue2134. https://github.com/apache/dubbo/issues/2134
[16] 2025. Issue227. https://github.com/ExpediaGroup/styx/issues/227
[17] 2025. Issue272. https://github.com/jvelo/mayocat-shop/issues/272
[18] 2025. Issue315. https://github.com/ff4j/ff4j/issues/315
[19] 2025. Issue345. https://github.com/Azure/azure-storage-java/issues/345
[20] 2025. Issue39. https://github.com/subchen/jetbrick-template-2x/issues/39
[21] 2025. Issue473. https://github.com/google/truth/issues/473
[22] 2025. Issue477. https://github.com/vipshop/Saturn/issues/477
[23] 2025. Issue653. https://github.com/sarxos/webcam-capture/issues/653
[24] 2025. ReachBench. https://github.com/ReachCheck/ReachCheck/blob/main/Data/ReachBench.md
[25] 2025. Storm-3171. https://issues.apache.org/jira/browse/STORM-3171
[26] Rakesh Agrawal, Alexander Borgida, and H. V. Jagadish. 1989. Efficient Management of Transitive Relationships in

Large Data and Knowledge Bases. In Proceedings of the 1989 ACM SIGMOD International Conference on Management of
Data, Portland, Oregon, USA, May 31 - June 2, 1989, James Clifford, Bruce G. Lindsay, and David Maier (Eds.). ACM
Press, 253–262. https://doi.org/10.1145/67544.66950

[27] Steven Arzt and Eric Bodden. 2016. StubDroid: Automatic inference of precise data-flow summaries for the Android
framework. In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE). IEEE, 725–735.

[28] Ramadhana Bramandia, Byron Choi, and Wee Keong Ng. 2010. Incremental Maintenance of 2-Hop Labeling of Large
Graphs. IEEE Trans. Knowl. Data Eng. 22, 5 (2010), 682–698. https://doi.org/10.1109/TKDE.2009.117

[29] Jing Cai and Chung Keung Poon. 2010. Path-hop: efficiently indexing large graphs for reachability queries. In
Proceedings of the 19th ACM Conference on Information and Knowledge Management, CIKM 2010, Toronto, Ontario,

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

https://github.com/ReachCheck/ReachCheck
https://github.com/ff4j/ff4j/issues/309
https://www.jetbrains.com/guide/java/tutorials/analyzing-dependencies/dependency-analyzer/
https://www.jetbrains.com/guide/java/tutorials/analyzing-dependencies/dependency-analyzer/
https://security.snyk.io/
https://github.com/soot-oss/SootUp
https://github.com/ReachCheck/ReachCheck/blob/main/reportData/CVE_reports.md
https://github.com/ReachCheck/ReachCheck/blob/main/reportData/DC_reports.md
https://www.jetbrains.com/idea/
https://www.jetbrains.com/help/idea/package-analysis.html
https://issues.apache.org/jira/browse/BEAM-3690
https://soot-oss.github.io/SootUp/v1.1.2/call-graph-construction/
https://github.com/ff4j/ff4j
https://issues.apache.org/jira/browse/HADOOP-15261
https://github.com/locationtech/geowave/issues/1371
https://github.com/st-js/st-js/issues/146
https://github.com/apache/dubbo/issues/2134
https://github.com/ExpediaGroup/styx/issues/227
https://github.com/jvelo/mayocat-shop/issues/272
https://github.com/ff4j/ff4j/issues/315
https://github.com/Azure/azure-storage-java/issues/345
https://github.com/subchen/jetbrick-template-2x/issues/39
https://github.com/google/truth/issues/473
https://github.com/vipshop/Saturn/issues/477
https://github.com/sarxos/webcam-capture/issues/653
https://github.com/ReachCheck/ReachCheck/blob/main/Data/ReachBench.md
https://issues.apache.org/jira/browse/STORM-3171
https://doi.org/10.1145/67544.66950
https://doi.org/10.1109/TKDE.2009.117

ReachCheck: Compositional Library-Aware Call Graph Reachability Analysis in the IDEs 111:27

Canada, October 26-30, 2010, Jimmy X. Huang, Nick Koudas, Gareth J. F. Jones, Xindong Wu, Kevyn Collins-Thompson,
and Aijun An (Eds.). ACM, 119–128. https://doi.org/10.1145/1871437.1871457

[30] Li Chen, Amarnath Gupta, and M. Erdem Kurul. 2005. Stack-based Algorithms for Pattern Matching on DAGs. In
Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September 2,
2005, Klemens Böhm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Åke Larson, and Beng Chin Ooi (Eds.).
ACM, 493–504. http://www.vldb.org/archives/website/2005/program/paper/wed/p493-chen.pdf

[31] James Cheng, Silu Huang, Huanhuan Wu, and Ada Wai-Chee Fu. 2013. TF-Label: a topological-folding labeling scheme
for reachability querying in a large graph. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias
(Eds.). ACM, 193–204. https://doi.org/10.1145/2463676.2465286

[32] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability and Distance Queries via 2-Hop Labels.
SIAM J. Comput. 32, 5 (2003), 1338–1355. https://doi.org/10.1137/S0097539702403098

[33] Andreas Dann, Ben Hermann, and Eric Bodden. 2023. UPCY: Safely Updating Outdated Dependencies. In 45th
IEEE/ACM International Conference on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE,
233–244. https://doi.org/10.1109/ICSE48619.2023.00031

[34] Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith, and Emerson R. Murphy-Hill. 2017.
Cheetah: just-in-time taint analysis for Android apps. In Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017 - Companion Volume, Sebastián Uchitel, Alessandro
Orso, and Martin P. Robillard (Eds.). IEEE Computer Society, 39–42. https://doi.org/10.1109/ICSE-C.2017.20

[35] Georgios-Petros Drosos, Thodoris Sotiropoulos, Diomidis Spinellis, and Dimitris Mitropoulos. 2024. Bloat beneath
Python’s Scales: A Fine-Grained Inter-Project Dependency Analysis. Proc. ACM Softw. Eng. 1, FSE, Article 114 (jul
2024), 24 pages. https://doi.org/10.1145/3660821

[36] Kathrin Hanauer, Christian Schulz, and Jonathan Trummer. 2022. O’Reach: Even Faster Reachability in Large Graphs.
ACM J. Exp. Algorithmics 27 (2022), 4.2:1–4.2:27. https://doi.org/10.1145/3556540

[37] Joseph Hejderup, Moritz Beller, Konstantinos Triantafyllou, and Georgios Gousios. 2022. Präzi: from package-based to
call-based dependency networks. Empirical Software Engineering 27, 5 (2022), 102.

[38] Joseph Hejderup, Arie Van Deursen, and Georgios Gousios. 2018. Software ecosystem call graph for dependency
management. In Proceedings of the 40th International Conference on Software Engineering: New Ideas and Emerging
Results. 101–104.

[39] Kaifeng Huang, Bihuan Chen, Congying Xu, Ying Wang, Bowen Shi, Xin Peng, Yijian Wu, and Yang Liu. 2022.
Characterizing usages, updates and risks of third-party libraries in Java projects. Empir. Softw. Eng. 27, 4 (2022), 90.
https://doi.org/10.1007/S10664-022-10131-8

[40] Ruoming Jin, Ning Ruan, Yang Xiang, and Haixun Wang. 2011. Path-tree: An efficient reachability indexing scheme
for large directed graphs. ACM Trans. Database Syst. 36, 1 (2011), 7:1–7:44. https://doi.org/10.1145/1929934.1929941

[41] Ruoming Jin and Guan Wang. 2013. Simple, Fast, and Scalable Reachability Oracle. Proc. VLDB Endow. 6, 14 (2013),
1978–1989. https://doi.org/10.14778/2556549.2556578

[42] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 2009. 3-HOP: a high-compression indexing scheme for
reachability query. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, Ugur Çetintemel, Stanley B. Zdonik, Donald Kossmann, and
Nesime Tatbul (Eds.). ACM, 813–826. https://doi.org/10.1145/1559845.1559930

[43] Mehdi Keshani, Georgios Gousios, and Sebastian Proksch. 2024. Frankenstein: fast and lightweight call graph generation
for software builds. Empir. Softw. Eng. 29, 1 (2024), 1. https://doi.org/10.1007/S10664-023-10388-7

[44] Robin Kobus, Adrian Lamoth, André Müller, Christian Hundt, Stefan Kramer, and Bertil Schmidt. 2018. cuBool:
Bit-Parallel Boolean Matrix Factorization on CUDA-Enabled Accelerators. In 24th IEEE International Conference on
Parallel and Distributed Systems, ICPADS 2018, Singapore, December 11-13, 2018. IEEE, 465–472. https://doi.org/10.1109/
PADSW.2018.8644574

[45] Bozhen Liu and Jeff Huang. 2018. D4: fast concurrency debugging with parallel differential analysis. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA,
June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 359–373. https://doi.org/10.1145/3192366.3192390

[46] Benjamin Livshits, John Whaley, and Monica S. Lam. 2005. Reflection analysis for java. In Proceedings of the Third Asian
Conference on Programming Languages and Systems (Tsukuba, Japan) (APLAS’05). Springer-Verlag, Berlin, Heidelberg,
139–160. https://doi.org/10.1007/11575467_11

[47] Qiuyi Lyu, Yuchen Li, Bingsheng He, and Bin Gong. 2021. DBL: Efficient Reachability Queries on Dynamic Graphs. In
Database Systems for Advanced Applications - 26th International Conference, DASFAA 2021, Taipei, Taiwan, April 11-14,
2021, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12682), Christian S. Jensen, Ee-Peng Lim, De-Nian
Yang, Wang-Chien Lee, Vincent S. Tseng, Vana Kalogeraki, Jen-Wei Huang, and Chih-Ya Shen (Eds.). Springer, 761–777.
https://doi.org/10.1007/978-3-030-73197-7_52

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

https://doi.org/10.1145/1871437.1871457
http://www.vldb.org/archives/website/2005/program/paper/wed/p493-chen.pdf
https://doi.org/10.1145/2463676.2465286
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1109/ICSE48619.2023.00031
https://doi.org/10.1109/ICSE-C.2017.20
https://doi.org/10.1145/3660821
https://doi.org/10.1145/3556540
https://doi.org/10.1007/S10664-022-10131-8
https://doi.org/10.1145/1929934.1929941
https://doi.org/10.14778/2556549.2556578
https://doi.org/10.1145/1559845.1559930
https://doi.org/10.1007/S10664-023-10388-7
https://doi.org/10.1109/PADSW.2018.8644574
https://doi.org/10.1109/PADSW.2018.8644574
https://doi.org/10.1145/3192366.3192390
https://doi.org/10.1007/11575467_11
https://doi.org/10.1007/978-3-030-73197-7_52

111:28 Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu

[48] Egor Orachev, Maria Karpenko, Artem Khoroshev, and Semyon V. Grigorev. 2021. SPbLA: The Library of GPGPU-
Powered Sparse Boolean Linear Algebra Operations. In IEEE International Parallel and Distributed Processing Symposium
Workshops, IPDPS Workshops 2021, Portland, OR, USA, June 17-21, 2021. IEEE, 272–275. https://doi.org/10.1109/
IPDPSW52791.2021.00049

[49] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2018. Beyond Metadata: Code-Centric and Usage-Based
Analysis of Known Vulnerabilities in Open-Source Software. In 2018 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018. IEEE Computer Society, 449–460.
https://doi.org/10.1109/ICSME.2018.00054

[50] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2020. Detection, assessment and mitigation of vulnerabilities
in open source dependencies. Empir. Softw. Eng. 25, 5 (2020), 3175–3215. https://doi.org/10.1007/S10664-020-09830-X

[51] Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and Mira Mezini. 2016. Call graph construction for
Java libraries. In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2016, Seattle, WA, USA, November 13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su (Eds.).
ACM, 474–486. https://doi.org/10.1145/2950290.2950312

[52] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural dataflow analysis via graph reachability.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 49–61.

[53] Ralf Schenkel, Anja Theobald, and Gerhard Weikum. 2005. Efficient Creation and Incremental Maintenance of the
HOPI Index for Complex XML Document Collections. In Proceedings of the 21st International Conference on Data
Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan, Karl Aberer, Michael J. Franklin, and Shojiro Nishio (Eds.). IEEE
Computer Society, 360–371. https://doi.org/10.1109/ICDE.2005.57

[54] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. 2021. Lossless, persisted summarization of static callgraph,
points-to and data-flow analysis. In 35th European Conference on Object-Oriented Programming (ECOOP 2021). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2–1.

[55] Neha Sengupta, Amitabha Bagchi, Maya Ramanath, and Srikanta Bedathur. 2019. ARROW: Approximating Reachability
Using Random Walks Over Web-Scale Graphs. In 35th IEEE International Conference on Data Engineering, ICDE 2019,
Macao, China, April 8-11, 2019. IEEE, 470–481. https://doi.org/10.1109/ICDE.2019.00049

[56] Stephan Seufert, Avishek Anand, Srikanta J. Bedathur, and Gerhard Weikum. 2013. FERRARI: Flexible and efficient
reachability range assignment for graph indexing. In 29th IEEE International Conference on Data Engineering, ICDE
2013, Brisbane, Australia, April 8-12, 2013, Christian S. Jensen, Christopher M. Jermaine, and Xiaofang Zhou (Eds.). IEEE
Computer Society, 1009–1020. https://doi.org/10.1109/ICDE.2013.6544893

[57] Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. 2015. More sound static handling
of Java reflection. In Asian Symposium on Programming Languages and Systems. Springer, 485–503.

[58] Xiaohu Song, Ying Wang, Xiao Cheng, Guangtai Liang, Qianxiang Wang, and Zhiliang Zhu. 2024. Efficiently Trimming
the Fat: Streamlining Software Dependencies with Java Reflection and Dependency Analysis. In Proceedings of the
46th IEEE/ACM International Conference on Software Engineering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024. ACM,
103:1–103:12. https://doi.org/10.1145/3597503.3639123

[59] Xiaohu Song, Ying Wang, Xiao Cheng, Guangtai Liang, Qianxiang Wang, and Zhiliang Zhu. 2024. Efficiently Trimming
the Fat: Streamlining Software Dependencies with Java Reflection and Dependency Analysis. In Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering (Lisbon, Portugal) (ICSE ’24). Association for
Computing Machinery, New York, NY, USA, Article 103, 12 pages. https://doi.org/10.1145/3597503.3639123

[60] Johannes Späth, Karim Ali, and Eric Bodden. 2017. Ide al: Efficient and precise alias-aware dataflow analysis. Proceedings
of the ACM on Programming Languages 1, OOPSLA (2017), 1–27.

[61] Jiao Su, Qing Zhu, Hao Wei, and Jeffrey Xu Yu. 2017. Reachability Querying: Can It Be Even Faster? IEEE Trans. Knowl.
Data Eng. 29, 3 (2017), 683–697. https://doi.org/10.1109/TKDE.2016.2631160

[62] Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. 2020. On the recall of static call graph construction in
practice. In ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020,
Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 1049–1060. https://doi.org/10.1145/3377811.3380441

[63] Silke Trißl and Ulf Leser. 2007. Fast and practical indexing and querying of very large graphs. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, Beijing, China, June 12-14, 2007, Chee Yong Chan,
Beng Chin Ooi, and Aoying Zhou (Eds.). ACM, 845–856. https://doi.org/10.1145/1247480.1247573

[64] Chao Wang, Rongxin Wu, Haohao Song, Jiwu Shu, and Guoqing Li. 2022. smartPip: A Smart Approach to Resolving
Python Dependency Conflict Issues. In 37th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2022, Rochester, MI, USA, October 10-14, 2022. ACM, 93:1–93:12. https://doi.org/10.1145/3551349.3560437

[65] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu. 2006. Dual Labeling: Answering Graph Reachability
Queries in Constant Time. In Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006, 3-8
April 2006, Atlanta, GA, USA, Ling Liu, Andreas Reuter, Kyu-Young Whang, and Jianjun Zhang (Eds.). IEEE Computer
Society, 75. https://doi.org/10.1109/ICDE.2006.53

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

https://doi.org/10.1109/IPDPSW52791.2021.00049
https://doi.org/10.1109/IPDPSW52791.2021.00049
https://doi.org/10.1109/ICSME.2018.00054
https://doi.org/10.1007/S10664-020-09830-X
https://doi.org/10.1145/2950290.2950312
https://doi.org/10.1109/ICDE.2005.57
https://doi.org/10.1109/ICDE.2019.00049
https://doi.org/10.1109/ICDE.2013.6544893
https://doi.org/10.1145/3597503.3639123
https://doi.org/10.1145/3597503.3639123
https://doi.org/10.1109/TKDE.2016.2631160
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/1247480.1247573
https://doi.org/10.1145/3551349.3560437
https://doi.org/10.1109/ICDE.2006.53

ReachCheck: Compositional Library-Aware Call Graph Reachability Analysis in the IDEs 111:29

[66] Huiyan Wang, Shuguan Liu, Lingyu Zhang, and Chang Xu. 2023. Automatically Resolving Dependency-Conflict
Building Failures via Behavior-Consistent Loosening of Library Version Constraints. In Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (San
Francisco, CA, USA) (ESEC/FSE 2023). Association for Computing Machinery, New York, NY, USA, 198–210. https:
//doi.org/10.1145/3611643.3616264

[67] Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang, Bo Yang, Hai Yu, Zhiliang Zhu, and Shing-Chi Cheung.
2018. Do the dependency conflicts in my project matter?. In Proceedings of the 2018 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu (Eds.).
ACM, 319–330. https://doi.org/10.1145/3236024.3236056

[68] Ying Wang, Ming Wen, Rongxin Wu, Zhenwei Liu, Shin Hwei Tan, Zhiliang Zhu, Hai Yu, and Shing-Chi Cheung. 2019.
Could I have a stack trace to examine the dependency conflict issue?. In Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon
Whittle (Eds.). IEEE / ACM, 572–583. https://doi.org/10.1109/ICSE.2019.00068

[69] Ying Wang, Rongxin Wu, Chao Wang, Ming Wen, Yepang Liu, Shing-Chi Cheung, Hai Yu, Chang Xu, and Zhiliang Zhu.
2022. Will Dependency Conflicts Affect My Program’s Semantics? IEEE Trans. Software Eng. 48, 7 (2022), 2295–2316.
https://doi.org/10.1109/TSE.2021.3057767

[70] Hao Wei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. 2014. Reachability Querying: An Independent Permutation Labeling
Approach. Proc. VLDB Endow. 7, 12 (2014), 1191–1202. https://doi.org/10.14778/2732977.2732992

[71] Hao Wei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. 2018. Reachability querying: an independent permutation labeling
approach. VLDB J. 27, 1 (2018), 1–26. https://doi.org/10.1007/S00778-017-0468-3

[72] Rongxin Wu, Yuxuan He, Jiafeng Huang, Chengpeng Wang, Wensheng Tang, Qingkai Shi, Xiao Xiao, and Charles
Zhang. 2024. LibAlchemy: A Two-Layer Persistent Summary Design for Taming Third-Party Libraries in Static
Bug-Finding Systems. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering, ICSE 2024,
Lisbon, Portugal, April 14-20, 2024. ACM, 105:1–105:13. https://doi.org/10.1145/3597503.3639132

[73] Yulun Wu, Zeliang Yu, Ming Wen, Qiang Li, Deqing Zou, and Hai Jin. 2023. Understanding the Threats of Upstream
Vulnerabilities to Downstream Projects in the Maven Ecosystem. In 45th IEEE/ACM International Conference on Software
Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE, 1046–1058. https://doi.org/10.1109/ICSE48619.
2023.00095

[74] Meiqiu Xu, Ying Wang, Shing-Chi Cheung, Hai Yu, and Zhiliang Zhu. 2022. Insight: Exploring Cross-Ecosystem
Vulnerability Impacts. In 37th IEEE/ACM International Conference on Automated Software Engineering, ASE 2022,
Rochester, MI, USA, October 10-14, 2022. ACM, 58:1–58:13. https://doi.org/10.1145/3551349.3556921

[75] Yosuke Yano, Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast and scalable reachability queries on graphs
by pruned labeling with landmarks and paths. In 22nd ACM International Conference on Information and Knowledge
Management, CIKM’13, San Francisco, CA, USA, October 27 - November 1, 2013, Qi He, Arun Iyengar, Wolfgang Nejdl,
Jian Pei, and Rajeev Rastogi (Eds.). ACM, 1601–1606. https://doi.org/10.1145/2505515.2505724

[76] Hilmi Yildirim, Vineet Chaoji, and Mohammed Javeed Zaki. 2010. GRAIL: Scalable Reachability Index for Large Graphs.
Proc. VLDB Endow. 3, 1 (2010), 276–284. https://doi.org/10.14778/1920841.1920879

[77] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. 2013. DAGGER: A Scalable Index for Reachability Queries in
Large Dynamic Graphs. CoRR abs/1301.0977 (2013). arXiv:1301.0977 http://arxiv.org/abs/1301.0977

[78] Changyong Yu, Tianmei Ren, Wenyu Li, Huimin Liu, Haitao Ma, and Yuhai Zhao. 2024. BL: An Efficient Index for
Reachability Queries on Large Graphs. IEEE Trans. Big Data 10, 2 (2024), 108–121. https://doi.org/10.1109/TBDATA.
2023.3327215

[79] Sheng Zhan and Jeff Huang. 2016. ECHO: instantaneous in situ race detection in the IDE. In Proceedings of the
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,
November 13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su (Eds.). ACM, 775–786. https:
//doi.org/10.1145/2950290.2950332

[80] Chao Zhang, Angela Bonifati, and M. Tamer Özsu. 2023. An Overview of Reachability Indexes on Graphs. In
Companion of the 2023 International Conference on Management of Data, SIGMOD/PODS 2023, Seattle, WA, USA,
June 18-23, 2023, Sudipto Das, Ippokratis Pandis, K. Selçuk Candan, and Sihem Amer-Yahia (Eds.). ACM, 61–68.
https://doi.org/10.1145/3555041.3589408

[81] Chao Zhang, Angela Bonifati, and M. Tamer Özsu. 2023. An Overview of Reachability Indexes on Graphs. In Companion
of the 2023 International Conference onManagement of Data (Seattle,WA, USA) (SIGMOD ’23). Association for Computing
Machinery, New York, NY, USA, 61–68. https://doi.org/10.1145/3555041.3589408

[82] Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Bihuan Chen, and Yang Liu. 2022. Has My Release
Disobeyed Semantic Versioning? Static Detection Based on Semantic Differencing. In 37th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2022, Rochester, MI, USA, October 10-14, 2022. ACM, 51:1–51:12.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

https://doi.org/10.1145/3611643.3616264
https://doi.org/10.1145/3611643.3616264
https://doi.org/10.1145/3236024.3236056
https://doi.org/10.1109/ICSE.2019.00068
https://doi.org/10.1109/TSE.2021.3057767
https://doi.org/10.14778/2732977.2732992
https://doi.org/10.1007/S00778-017-0468-3
https://doi.org/10.1145/3597503.3639132
https://doi.org/10.1109/ICSE48619.2023.00095
https://doi.org/10.1109/ICSE48619.2023.00095
https://doi.org/10.1145/3551349.3556921
https://doi.org/10.1145/2505515.2505724
https://doi.org/10.14778/1920841.1920879
https://arxiv.org/abs/1301.0977
http://arxiv.org/abs/1301.0977
https://doi.org/10.1109/TBDATA.2023.3327215
https://doi.org/10.1109/TBDATA.2023.3327215
https://doi.org/10.1145/2950290.2950332
https://doi.org/10.1145/2950290.2950332
https://doi.org/10.1145/3555041.3589408
https://doi.org/10.1145/3555041.3589408

111:30 Chao Wang, Li Lin, Chengpeng Wang, Jiafeng Huang, Congxia Wu, and Rongxin Wu

https://doi.org/10.1145/3551349.3556956
[83] Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Lida Zhao, JiahuiWu, and Yang Liu. 2023. Compatible

Remediation on Vulnerabilities from Third-Party Libraries for Java Projects. In 45th IEEE/ACM International Conference
on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE, 2540–2552. https://doi.org/10.1109/
ICSE48619.2023.00212

[84] Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui Xiao. 2014. Reachability queries on large dynamic graphs: a
total order approach. In International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27,
2014, Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu (Eds.). ACM, 1323–1334. https://doi.org/10.1145/2588555.2612181

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2025.

https://doi.org/10.1145/3551349.3556956
https://doi.org/10.1109/ICSE48619.2023.00212
https://doi.org/10.1109/ICSE48619.2023.00212
https://doi.org/10.1145/2588555.2612181

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Acronyms and Their Definitions
	2.2 Motivation
	2.3 Preliminaries
	2.4 Key Idea

	3 Problem Formulation
	3.1 Program Syntax.
	3.2 Call Graph Models.
	3.3 Problem Statement.

	4 Approach: Compositional Call Graph Reachability Analysis
	4.1 Internal Call Graph Summarization
	4.2 Demand-driven Summary Retrieval
	4.3 Reachability Analysis

	5 Applications and Implementation
	5.1 Applications of Call Graph Reachability Analysis
	5.2 Implementation

	6 Evaluation
	6.1 Experimental Setup
	6.2 Efficiency
	6.3 Comparison with baselines
	6.4 Usefulness

	7 Discussion
	7.1 Impact of Call Edges Refinement
	7.2 Impact of Demand-driven Summary Retrieval
	7.3 Time and Space Cost of Summary Computation
	7.4 Impact of Call Graph Construction Algorithms
	7.5 Threats to Validity
	7.6 Limitations and Future Work

	8 Related Work
	8.1 Risk Detection in Ecosystem
	8.2 IDE Detection Plugin
	8.3 Reachability Indices
	8.4 Function Summaries in Compositional Analysis

	9 Conclusion
	References

