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PATEN: Identifying Unpatched Third-Party APIs
via Fine-grained Patch-enhanced AST-level

Signature
Li Lin, Jialin Ye, Chao Wang, and Rongxin Wu

Abstract—Using a third-party library (TPL) API that is still unpatched with respect to known vulnerabilities would introduce severe security
threats, and thus it is important to detect unpatched API as early as possible. Existing vulnerability detection methods often fail to identify
subtle differences between patched and vulnerable versions of code, leading to high rates of false positives and missed vulnerabilities.
Addressing these limitations, we propose a novel approach that employs a fine-grained, patch-enhanced Abstract Syntax Tree (AST) level
signature. This approach consists of two key steps: patch-induced AST difference extraction and vulnerability trace refinement. These
steps enable the detailed analysis of structural changes due to patches and enhance the accuracy of vulnerability detection by focusing
on the critical elements of code changes.
Building on this methodology, we introduce PATEN, a tool designed to accurately detect unpatched TPL APIs. Our evaluation, conducted
on a large dataset, demonstrates that PATEN significantly outperforms the state-of-the-art approaches. Specifically, PATEN identified 82
critical vulnerabilities across numerous open-source projects, demonstrating a substantial advancement in the field of unpatched TPL API
detection and highlighting its practical implications for improving software security.

Index Terms—Unpatched API, Vulnerability detection and Third-party Libraries
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1 INTRODUCTION

Vulnerabilities in third-party libraries (TPLs) are widespread
[1], [2], [3], [4], [5], [6], [7], making the identification of
vulnerable TPL API usage critically important for effective
software maintenance [1], [4], [8], [9]. To cater for such a
need, some recent studies propose to leverage the call graph
analysis to check whether vulnerable TPL APIs [1], [4], [9]
are reachable from a given application project. However,
these techniques are unable to proceed without knowing
whether a TPL API is still unpatched with respect to the
known vulnerabilities. These approaches are constrained
by the availability of complete and accurate metadata (e.g.,
library name, affected versions, vulnerability description) [9].
Unfortunately, these metadata, which are used to map each
TPL onto a list of known vulnerabilities that affect it, are
often incomplete, inconsistent, or missing altogether [1]. For
example, the metadata of a vulnerable TPL API is often
not available since its corresponding library would often be
recompiled, repackaged, or manipulated [1]. This motivates
us to study the problem of unpatched API identification
without relying on metadata. Our key idea is to leverage a
pre-constructed vulnerability database and analyze whether
a reachable vulnerable TPL API is still unpatched, based on
the specific known vulnerabilities and patches associated
with it.
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Existing approachs. Our task is to ascertain whether a given
TPL API is vulnerable or has been patched, taking into
account specific known vulnerabilities and patches. A general
idea for identifying unpatched APIs involves comparing
the source code of a target API with the code of known
vulnerabilities and their corresponding fixed versions [10],
[11], [12], [13], [14], [15], [16], [17]. Existing approaches can
be categorized into clone-based and patch-enhanced matching
approaches.

Clone-based approaches [12], [15], [16], [17], [18], [19]
consider the identification of unpatched APIs as a code
clone detection problem. These methods involve extracting
signatures from both vulnerable and patched APIs. The core
idea is to compare a target API against these signatures to
determine similarity. If the target API is more similar to the
signature of a vulnerable API than to that of its patched
counterpart, it is identified as vulnerable. However, due
to the nature of clone detection and no consideration of
how a vulnerability is fixed, clone-based approaches fail to
differentiate the potentially small differences between vulner-
able API and patched API, causing high false positives [20].
Consequently, these methods are not specifically tailored for
the accurate identification of unpatched APIs.

Patch-enhanced matching approaches [10], [11], [14],
[20], [21], [22] alleviate the limitations of clone-based ap-
proaches by leveraging the characteristics of vulnerability-
fixing patches. However, these methods predominantly pre-
serve statement-level characteristics, often using techniques
like hashing algorithm to directly encode statements into
signatures. This coarse-grained representation often fails
to distinguish between critical (i.e., vulnerability-related or
patch-related) and non-critical vulnerable elements within
statements, limiting the effectiveness in accurately identify-
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CVE Number: CVE-2016-0168

Bug Fix Commit: 2d9b168cfbbf5a6d16fa6e8a5b34503e3dc42364

154 public Map<String, String> handleCorsPreflightRequest (String pOrigin, 

String pRequestHeaders) { 

155 Map<String,String> ret = new HashMap<String, String>(); 

156    - if (pOrigin != null && backendManager.isCorsAccessAllowed(pOrigin))

157 + if (pOrigin != null && backendManager.isOriginAllowed(pOrigin,false))

// ..... 

168 }

(a) Patch for fixing CVE-2014-0168 (merged into jolokia-core 1.2.1, 1.2.2, 1.2.3, 

1.3.0, 1.3.1, 1.3.2, 1.3.4, 1.3.5, 1.3.6, 1.3.7, 1.4.0, 1.5.0, 1.6.0, 1.6.1, 1.6.2, 1.7.0, 

1.7.1 ...) 

Target Version: 1.0.3

Bug Fix Commit: 932c7a51d4a251a6c1f03868415ba3c89f5ee205

Is Vulnerable: True

134  public Map<String, String> handleCorsPreflightRequest (String pOrigin,

String pRequestHeaders) {

135      Map<String,String> ret = new HashMap<String, String>();

136      if (backendManager.isCorsAccessAllowed(pOrigin))

137  //  .....

146  }

(b) A vulnerable target TPL API (in jolokia-core 1.0.3) 

Fig. 1: Example 1 of vulnerability-fixing patch and a target
API that is vulnerable. Highlighting critical vulnerability
elements in identifying unpatched APIs.

ing nuanced vulnerabilities.
Motivation example. Figure 1(a) shows a patch for fix-
ing the API for the vulnerability CVE-2014-0168. Figure
1(b) shows a target API that is vulnerable. However,
using patch-enhanced matching approaches that rely on
coarse-grained representations (i.e., statement-level signa-
tures), the modified line (Line 156) in Figure 1(a) does
not match with Line 136 in Figure 1(b), resulting in a
false negative. In reality, the critical vulnerable element
“backendManager.isCorsAccessAllowed” in Line 156
perfectly matches Line 136 in Figure 1(b). This misclassifica-
tion primarily occurs because the statement-level signature
fails to differentiate between the critical vulnerable ele-
ment “backendManager.isCorsAccessAllowed” and
the non-critical element “pOrigin!=null”.
Key insight. To precisely target critical vulnerable elements
within patches, we introduce a fine-grained patch-enhanced
AST-level signature that offers a more detailed description of
code structure and characteristics. This approach surpasses
the capabilities of statement-level signatures by providing
a more accurate localization of vulnerability modifications.
The patch-enhanced AST-level signature is realized through
the following two main steps:
• Patch-Induced AST Difference Extraction: This step involves

extracting subtrees related to changes made during the
vulnerability fix, enabling the pinpointing of the critical
vulnerable element. The AST difference effectively high-
lights minor modifications by reflecting changes in nodes,
such as types and variable names.

• Vulnerability Trace Refinement: Based on our observations,
the genesis of vulnerabilities is frequently linked to vari-
able propagation. This step refines the extracted subtrees
by tracking variable interactions through program slicing,
seamlessly integrating context-specific AST segments to

form a complete subtree that effectively highlights critical
changes. The refined differential subtrees then serve as
fine-grained, enhanced signatures, significantly improving
the accuracy of vulnerability detection.

Implementation. We developed PATEN, leveraging the
patch-enhanced AST-level signature to detect vulnerabilities
in software. The process begins by assembling a detailed
database of known vulnerabilities, sourced from platforms
like Snyk [23] and GitHub [24]. Subsequently, we extract
signatures for both the vulnerabilities and their patches
pertaining to affected APIs. PATEN matches these signatures
against the APIs utilized in a given project to pinpoint any
that are unpatched or still vulnerable. Finally, to assess the
real-world impact, we check if these vulnerable APIs are
actually being called within the project.

Evaluation. To evaluate the effectiveness of PATEN, we
mined patches for 334 known Java library vulnerabili-
ties from prominent security sources, including the Snyk
platform [23] and the Github platform [24]. Our ground
truth dataset comprises 30,389 versions of TPL APIs, both
vulnerable and patched.

We compared PATEN against six leading patch-enhanced
matching approaches: VUDDY [11], REDEBUG [10], MVP
[20], MOVERY [21], SECURESYNC [14], and VISION [22].
The comparative analysis revealed that PATEN significantly
outperformed its competitors, achieving improvements in
F1-measure by 20% for VISION, 39% for SECURESYNC,
1,300% for MVP, 3,364% for REDEBUG, 3,586% for MOVERY,
and 5,321% for VUDDY, demonstrating its superior capability
in accurately detecting vulnerabilities. We also employed it
to detect unpatched APIs in real-world projects. Finally, we
submitted 82 bug reports, of which 71 are fixed by developers
and 11 are already confirmed.

Contributions. We summarize our contributions below.

• We introduce a fine-grained patch-enhanced AST-level
signature specifically designed for the identification of
unpatched APIs, which provides a more accurate analysis
of vulnerabilities.

• We implemented PATEN with the patch-enhanced AST-
level signature and conducted a comprehensive evaluation
against a large-scale ground truth dataset, revealing that
PATEN significantly outperforms existing state-of-the-art
techniques in both accuracy and reliability.

• PATEN found 82 bugs that are related to the usage of
unpatched TPL APIs in the open source projects.

2 MOTIVATION

In this section, we illustrate the importance of identify-
ing unpatched APIs, analyze the limitations of existing
approaches, and present our solution based on a fine-grained
methodology.

2.1 Importance of Identifying Unpatched API

The presence of vulnerabilities within TPLs poses signifi-
cant risks across software ecosystems. These vulnerabilities
are increasingly prevalent, underscoring the urgency for
effective security measures [25], [26], [27], [28]. Critically,
not all vulnerabilities found in TPLs are actively exploited
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Fig. 2: Solutions of Example 1 through patch-induced AST-Level difference extraction, highlighting critical vulnerable
elements within the statement.

CVE Number: CVE-2016-4438

Bug Fix Commit: 76eb8f38a33ad0f1f48464ee1311559c8d52dd6d

298  private void handleDynamicMethodInvocation

(ActionMapping mapping, String name) {

//  .....

302      String actionMethod = name.substring(exclamation + 1);

//  .....

310  }

311

312      mapping.setName(actionName);

313      if (allowDynamicMethodCalls) {

314  - mapping.setMethod(actionMethod);

314 +        mapping.setMethod(cleanupActionName(actionMethod));

315      } else {

316          mapping.setMethod(null);

//  .....

319  }

(a) Patch for fixing CVE-2016-4438

Target Version: 2.3.24.1

Is Vulnerable: True

203  private void handleDynamicMethodInvocation

(final ActionMapping mapping, final String name){

//  .....

205      if (exclamation != -1) {

206          mapping.setName(name.substring(0, exclamation));

207          if (this.allowDynamicMethodCalls) {

208              mapping.setMethod(name.substring(exclamation + 1));

209          }

210          else {

211              mapping.setMethod((String) null);

//  .....

214  }

(b) A vulnerable target APl(in struts2-rest-plugin 2.3.24.1)

Fig. 3: Example 2 of vulnerability-fixing patch and a target
API that is vulnerable. Highlighting the importance of
variable propagation in identifying unpatched APIs

in each project that includes them, which implies that
merely identifying the inclusion of a vulnerable library is
insufficient. Some recent studies propose leveraging call
graph analysis to check whether vulnerable TPL APIs

SN:

name

SN:

actionMethod 

MIR

VDS

ST

VDF

SN:

substring

SN:

String

(c) Context Line 302 which defined 

variable “actionMethod”

MI

(b) AST subtree for patch line 314 

(d) AST subtree in target API (Line 208)

SN:

mapping

*ST: SimpleType

*VDS: Variable Declaration Statement

*INFE: InfixExpression   

*SN: SimpleName

*IEO: INFIX EXPRESSION OPERATOR  

*MIR: METHOD INVOCATION RECEIVER 

*MIA: METHOD INVOCATION ARGUMENTS 

*MI: METHOD INVOCATION   

*ES: ExpressionStatement

*VDF: Variable Declaration Fragment

*NL: NumberLiterator

def-use connection token matching def-use point insert nodes of patch

*IFS: IFStatement

(a) AST subtree for vulnerable line 314

ES

MI

MIR

SN:

setMethod SN:

actionMethod 

MIA

ST1

ES

MI

MIR

SN:

mapping

SN:

setMethod

MIA

MI

SN:

cleanupActionName SN:

actionMethod 

MIA

ST2

ES

MI

MIR

SN:

mapping

SN:

setMethod

SN:

name

SN:

substring

MI

MIR

MIA

ST3
ST4

MI

SN:

cleanupActionName MI

MIA

SN:

name

MIR

SN:

substring

MI

SN:

name

MIR

SN:

substring

ST2+ST4ST1+ST4

(e) Vulnerability API  Signature (f) Patched API  Signature

MIA

INFE

SN:

exclamation IEO:+ 1

MIA

INFE

SN:

exclamation IEO:+ 1

MIA

INFE

SN:

exclamation
IEO:+ 1

MIA

INFE

SN:

exclamation IEO:+

1

Fig. 4: Solutions of Example 2 through vulnerable trace
refinement, highlighting variable propagation is critical for
accurately identifying vulnerabilities.

[1], [4], [9] are reachable from a given application project.
However, the true challenge lies not just in determining
the reachability of vulnerable TPL APIs, but in accurately
identifying whether these reachable APIs are still unpatched
and actively used within an application, as these pose the
most immediate threats. To overcome the challenge, these
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studies rely on metadata to assess whether the reachable
TPL APIs are vulnerable or have been patched. Typically,
these methods collect vulnerabilities in a TPL by searching
public vulnerability databases, such as the Snyk [23], and
then crawling metadata. They subsequently analyze whether
the vulnerable API paths are reachable, and finally, during
detection, they match part of the metadata, such as by
performing string matching with the version number of
the TPL used in the application project to determine if
it corresponds to a vulnerable version. Metadata plays a
critical role in this process, as it encompasses details such
as the library name, affected versions, and vulnerability
descriptions [9], directly impacting the ability to identify
truly at-risk components. Unfortunately, metadata may not
always be complete or consistent, leading to significant gaps
in vulnerability identification [1], [9]. This issue arises from
several key factors: first, the quantity of metadata available
for TPL versions is often limited, typically only covering
officially released versions; second, the names of TPLs can
be easily modified, particularly when developers engage in
secondary development, repackaging, or partial repackaging,
which makes it difficult to match the modified libraries with
the original metadata.

This gap underscores the need for robust techniques to
identify unpatched APIs specifically. These are the compo-
nents that, if left unaddressed, pose the most significant risks
to application security. Therefore, the task of identifying
unpatched APIs is crucial. Instead of relying on metadata,
we leverage a pre-constructed vulnerability database to
determine whether a given TPL API is vulnerable or has
been effectively patched, based on known vulnerabilities and
their corresponding patches.

2.2 Limitations of Existing Approaches
The identification of unpatched APIs typically involves
matching a target API’s source code against known vul-
nerabilities and their fixes, encompassing two main method-
ological approaches: clone-based and patch-enhanced match-
ing [10], [11], [12], [13], [14], [15], [16], [17].

Clone-based approaches [12], [15], [16], [17], [18], [19]
extract signatures from both vulnerable and patched APIs,
comparing these against a target API to assess similarity. If a
target API resembles the signature of a vulnerable API more
than its patched version, it is deemed vulnerable. These meth-
ods use various signature extraction techniques, including
text-based [18], token-based [15], [16], tree-based [19], and
graph-based [12], [17] representations. Specially, Tree-based
techniques utilize ASTs to identify structural nuances in code,
which remain consistent despite superficial changes like
whitespace [19]. Graph-based methods consider both syntax
and semantics, constructing Program Dependency Graphs
(PDG) that combine data flow and control flow graphs
to create semantic signatures that reflect code’s functional
aspects more intricately [12], [17]. These methods typically
describe entire code fragments using ASTs or PDGs but
essentially focus on detecting overall similarity between code
sections. Owing to the inherent nature of clone detection and
a lack of consideration for how vulnerabilities are specifically
addressed, these approaches struggle to differentiate subtle
differences between vulnerable and patched APIs, often
leading to high rates of false positives [20].

Patch-enhanced matching approaches [10], [11], [14], [20],
[21], [22] incorporate information from vulnerability patches,
unlike traditional clone-based approaches, which primarily
focus on the unchanged parts of the code. These patch-
enhanced methods specifically target the code modifications
introduced in patches to create more precise API signatures.
For example, MVP [20] utilizes program slicing techniques
to extract statements related to vulnerability patches and
generate function signatures. Similarly, MOVERY [21] em-
ploys function collation and core line extraction to focus on
essential code lines, creating signatures that summarize key
changes during updates. SECURESYNC [14] introduces an
enhanced AST to generate vulnerability patch signatures,
using feature vectors to calculate the textual and structural
similarities of code trees. VISION [22], on the other hand,
focuses on the affected library versions by identifying critical
methods and critical statements to generate vulnerability
and patch signatures, and calculates semantic similarity
using pre-trained models. Despite these techniques using
different forms to measure critical vulnerable code lines, such
methods largely maintain coarse-grained representations
at the statement level, relying on simple algorithms, such
as the MD5 hash algorithm, to convert statements into
signatures. This coarse-grained approach often struggles to
distinguish between critical elements, such as those directly
related to vulnerabilities or patches, and non-critical elements
within the statements, thereby reducing the effectiveness in
accurately identifying nuanced vulnerabilities. For example,
using a statement-level signature might lead to mismatches
such as the modified line (Line 156) in Figure 1(a) not
aligning with Line 136 in Figure 1(b), resulting in a false
negative. This motivates the need for a more fine-grained
approach to differentiate critical vulnerable elements like
“backendManager.isCorsAccessAllowed” from non-
critical elements such as “pOrigin!=null”.

2.3 Our Solution

To precisely target critical vulnerable elements within
patches, we propose a fine-grained methodology - patch-
enhanced AST-level signature, which provides a more accu-
rate localization of vulnerability modifications. The patch-
enhanced AST-level signature is realized through two key
steps.

The first step is Patch-Induced AST Difference Extrac-
tion. Motivated by tree-based clone-based approaches, we
leverage the AST to more precisely describe the structure
and characteristics of the code, with the goal of localizing
critical vulnerable elements. This step involves extracting
subtrees related to changes made during the vulnerability fix,
enabling the pinpointing of the critical vulnerable element.
For instance, by applying our method to the vulnerability-
fixing patch in Figure 1(a) and the target API in Figure 1(b),
we are able to identify the key vulnerable elements of the
vulnerable line and the patch line, highlighted in gray in Figure
2. We observe that the AST subtree of the target API (Figure
2(c)) closely matches the AST subtree of the patched version
of the API (Figure 2(a)).

The second step is Vulnerability Trace Refinement. Based on
our observations, the genesis of vulnerabilities is frequently
linked to variable propagation. Figures 3 and 4 present
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another example along with its corresponding solution, high-
lighting that variable propagation is critical for accurately
identifying vulnerabilities. Figure 4(a)(b) illustrates the first
step in extracting the differential AST subtrees ST1 and ST2

as vulnerability and patch signatures, respectively. However,
if we solely rely on the patch-induced AST difference
extraction method and use the differential subtrees ST1

and ST2 as signatures to match the target API, it remains
unclear whether ST3 in Figure 4(d) actually correspond
to ST1 or ST2. By carefully examining the code, we find
that Line 208 in Figure 3(b) is equivalent to the previously
deleted Line 314 in Figure 3(a) , since the expression
“name.substring(exclamation+1)” at Line 208 in Fig-
ure 3(b) matches the variable initialization “actionMethod
= name.substring(exclamation+1)” at Line 302 in
Figure 3(a). Without this semantic information, it is chal-
lenging to determine which subtree of the target API should
be used for matching. This step refines the extracted subtrees
by tracking variable interactions through program slicing,
seamlessly integrating context-specific AST segments to form
a complete subtree that effectively highlights critical changes.
Unlike traditional PDG methods, we focus solely on tracking
variable propagation, which increases analysis efficiency.
In contrast to CLDIFF’s code difference linking, which
establishes relationships between simplified code difference
statements using predefined links [29], our approach focuses
on leveraging AST stitching to combine the tracked variables
into a complete difference subtree. This method does not
rely on using full semantic information as API signatures,
allowing for a more targeted and efficient analysis. The
refined differential subtrees then serve as precise, enhanced
signatures, significantly improving the accuracy of vulner-
ability detection. In Figure 4(a)(b), the code at Line 314
involves the variable actionMethod. Through program
slicing, we can trace the definition of actionMethod at Line
302, then represent it using the corresponding AST in Figure
4(c) as subtree ST4. By employing the def-use relationships,
we stitch ST1 and ST2 together with ST4, as shown with the
red dashed line, creating a fine-grained signature shown in
in Figure 4(e)(f) that enables matching the otherwise hard-to-
locate ST3 to its similar part (ST1 + ST4), thus detecting the
vulnerability.

In summary, our fine-grained patch-enhanced AST-level
signature method to precisely identifies critical vulnerable
elements, significantly enhancing our ability to detect un-
patched APIs with improved accuracy and efficiency.

3 METHODOLOGY

In this section, we present the overview of PATEN and
provide some critical definitions. Key steps include extracting
a patch-enhanced AST-level signature and employing a simi-
larity algorithm for feature matching to identify unpatched
APIs.

3.1 Overview and Definitions

PATEN is designed to ascertain whether a given TPL API is
vulnerable or has been patched, taking into account specific
known vulnerabilities and patches. Figure 5 shows the
overview of PATEN. We generate an AST-level signature

for the target API and generate a AST-level vulnerability and
patched API signature for the vulnerability-fixing patch (see
Section 3.2). Then, we apply a tree similarity algorithm to
determine which is a closer match between the target API
and the vulnerabilities and patches. (see Section 3.3)

We introduces the key definitions used in our approach.
In the remaining of this paper, we assume that each vul-
nerability is within one API. We first define the AST-level
signature as follows.

Definition 1. (AST-level Signature) An AST-level API Sig-
nature (SIG), fundamentally represents the AST (FT ) of
the complete API code, encapsulating its structural compo-
sition and illustrating the hierarchical organization of its
programming constructs. An AST includes the following key
elements:

• Subtree (ST ): A subtree in the AST represents a
coherent subset of the program. Subtrees are critical
for analyzing parts of the code related to specific
functionalities or modifications.

• Node (SN ): Each node in the AST represents a specific
programming construct such as a statement, expression,
or declaration. Each SN is also considered a special type
of ST , specifically a ST that contains only one node,
thus representing the simplest form of a subtree.

Before defining the patch-enhanced AST-level signature,
we present a formal definition of the AST difference. Given
a vulnerable API, denoted as APIv , and a patched API,
denoted as APIp, we parse them into their respective ASTs,
denoted as FTv and FTp. By comparing FTv with FTp,
we can identify the difference subtree, which represents the
modifications made in APIp to address the vulnerabilities
found in APIv .

Definition 2. (AST Difference) We define the AST Difference
as a tuple of two sets.

ASTdifference = (DSetadd, DSetdel)

These sets represent the differences between the ASTs of a
vulnerable API and its patched version. More formally, we
define the elements of the two lists as follows.

DSetadd = {ST | ST ∈ FTp ∧ ST /∈ FTv}

DSetdel = {ST | ST ∈ FTv ∧ ST /∈ FTp}

With the formal representation of AST difference es-
tablished, we now define the patch-enhanced AST-level
signature.

Definition 3. (Patch-enhanced AST-level Signature) A patch-
enhanced AST-level signature (PSIG) is a set wherein each
element is a subtree (ST ), and each subtree represents the
modifications made in the patched API (APIp) to address
vulnerabilities found in the vulnerable API (APIv). The
patch-enhanced AST-level signature is subdivided into: vul-
nerability API signature (PSIGv) and patched API signature
(PSIGp). Specifically, PSIGv and PSIGp are subsets of
DSetdel and DSetadd, respectively. More examples and
illustrations will be elaborated in Section 3.2.
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Fig. 5: Approach overview of PATEN

Algorithm 1: Patch-induced AST Difference Extrac-
tion

Require: Vulnerable and patched API AST: FTv , FTp

Ensure: Patch-induced AST difference set: DIFFv , DIFFp

1: function EXTRACTDIFF(FTv , FTp)
2: DSetadd ← ∅, DSetdel ← ∅
3: for each ST ∈ FTp do // CONSTRUCT DSetadd
4: if ST /∈ FTv then
5: DSetadd ∪ {ST}
6: end if
7: end for
8: for each ST ∈ FTv do // CONSTRUCT DSetdel
9: if ST /∈ FTp then

10: DSetdel ∪ {ST}
11: end if
12: end for
13: DIFFv ← Extract common ancestors for subtrees in DSetdel
14: DIFFp ← Extract common ancestors for subtrees in DSetadd
15: return DIFFv , DIFFp

3.2 Patch-enhanced AST-level Signature Generation

To locate the critical elements of vulnerabilities in a more
fine-grained level, we propose the patch-enhanced AST-level
signature, which includes two main steps: patch-induced
AST difference extraction and vulnerability trace refinement.

3.2.1 Patch-induced AST Difference Extraction.
Patch-induced AST difference extraction process involves
analyzing the structural changes in the ASTs of a vulnerable
and patched API. This process helps to identify specific
modifications that fix vulnerabilities.

Algorithm 1 outlines the extraction process for identifying
changes between the ASTs of vulnerable and patched APIs.
From these ASTs, differential subtrees are compiled into two
distinct sets: DSetadd for additions and DSetdel for deletions.
For example, the subtree SN:isCorsAccessAllowed shown in
Figure 2(a) is cataloged under DSetdel, while the subtrees
SN:isOriginAllowed and BL:false from Figure 2(b) are listed
under DSetadd. Although the differential subtrees in either
DSetdel or DSetadd are finer granularity than statement, a
single differential subtree provides limited information for
matching. Thus, we propose to aggregate the differential
subtrees of the same statement together by the algorithm of
finding the lowest common ancestors in the AST [30]. For
example, the two subtrees SN:isOriginAllowed and BL:false in

Algorithm 2: Vulnerability Trace Refinement
Require: Patch-induced AST difference set: DIFFv , DIFFp

Require: Vulnerable and patched API AST: APIv , APIp
Ensure: Patch-enhanced AST-level signatures: PSIGp, PSIGv

1: function REFINETRACES(DIFF,API)
2: PSIG← ∅
3: for each diff ∈ DIFF do
4: for each node in diff do
5: if node is variable then
6: res← slicing(node, API)
7: if res affects vulnerability context then
8: PSIG ∪ {connect(diff, res)}
9: end if

10: end if
11: end for
12: end for
13: return PSIG
14: end function
15: PSIGv ← REFINETRACES(DIFFv , APIv)
16: PSIGp ← REFINETRACES(DIFFp, APIp)
17: return PSIGv , PSIGp

Figure 2(b) share the lowest common ancestor MI, which is a
more syntactically complete and representative subtree for
matching. Therefore, we select the subtree rooted at MI as the
aggregated differential subtree. Note that our aggregation
is performed only at the statement level of AST subtrees to
preserve the merits of fine granularity.

3.2.2 Vulnerability Trace Refinement
As mentioned in Section 2.3, the genesis of vulnerabilities is
often closely associated with variable propagation within the
code structure. This refinement phase is designed to increase
the accuracy of vulnerability identification by directly corre-
lating code modifications to the contexts of vulnerabilities.

Algorithm 2 shows the process of vulnerability trace
refinement. For each node in the differential subtrees, if the
node represents a variable, we perform program slicing on it.
This technique allows for the inclusion of relevant contextual
statements that aid in more precise vulnerability matching.
We perform forward and backward slicing on APIv (resp.
APIp) using the variables appearing at the deleted state-
ments (resp. the added statements) as the selection criterion,
but only focus on computing those statements that have
a def-use relationship on the selected variables. To avoid
introducing too many statements where some of them are
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irrelevant to the vulnerability, we only slice the statements
that directly define or use the selected variables. The result
of the slicing is then transformed back into the AST format.
These contextual AST segments, once integrated with the
differential ASTs through def-use edges, effectively form
connections that serve as the final patch-enhanced AST-level
signature.

For example, as shown in Figure 3(a), our approach in-
cludes only Line 302 as the contextual statement for analysis.
In Figure 4, we establish def-use edges from SN:actionMethod
in both ST1 and ST2 to the method invocation node MI.
Subsequently, ST1 (respectively, ST2), which is connected to
ST4 through these def-use edges, serves as the final signature
for identifying vulnerabilities (respectively, patches).

3.3 Unpatched API Identification
To identify unpatched APIs, we construct both a target API
signature and a vulnerability and patched API signature.
The method for constructing the target API signature is
similar to the patch-enhanced AST-level signature generation
process. Firstly, we parse the target API into an AST. To
ensure alignment with the signatures for vulnerabilities and
patches, we conduct vulnerability trace refinement. This
refinement culminates in the formation of the final target API
signature.

To determine which is a closer match between the target
API and the vulnerabilities and patches, we employ tree
edit distance [31] as a measure of similarity. This choice is
predicated on the ability of tree edit distance to quantitatively
reflect the minimal changes needed to transform one tree
into another, providing a nuanced and precise comparison of
AST structures [32], [33]. This metric is particularly effective
in capturing the structural nuances essential for accurate API
signature comparisons.

Current tree edit distance algorithms do not consider
node weights [31]. To address this limitation and incorporate
vulnerability characteristics, we introduce a node weighting
mechanism and a cost function.

Definition 4. (Cost Function) We first define the weight for
each node.

Weight(SN) = |Numofv(SN)−Numofp(SN)|

Where Numofv(SN) represents the frequency of the node in
the vulnerable API AST(FTv) and Numofp(SN) represents
its frequency in the patched API AST(FTp).

Cost(add) = Cost(del) = Weight(SN)× Costop

Costop represents the base operation cost for adding or
deleting a node, which is typically standardized across all
nodes. The Weight(SN) adjusts the cost of the operation
based on the frequency difference of the node between the
vulnerable and patched API ASTs.

To be more specific, given two trees T1 and T2, with
the definition of a cost function for the tree edit operations
(including node deletion and addition), the minimum cost
to convert from T1 to T2 is the edit distance, denoted as
dist(T1, T2). For example, in Figure 4, where the weight of
all nodes is set to 1, to convert from the combination tree

query

 return

Target API signature

Unpatched  API 
Detection

API  Usage 
Detection

Vulnerability Detection

Bug report

Vulnerability
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Third-party API 
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Vulnerable and patched 
API signature

Target project

def-use

def-use

Fig. 6: Implement architecture of PATEN

of ST2 + ST4 to the tree ST3, we only need to conduct
three addition operation on the node SN:cleanActionName, MI
and MIA, and thus the edit distance dist(ST2 + ST4, ST3)
is three. Similarly, the combination tree of ST1 + ST4 and
the tree ST3 are identical, meaning that the edit distance
dist(ST1 + ST4, ST3) is zero.

Intuitively, the value of the edit distance can be very large
if two comparing trees are very large. To mitigate the impact
of the scale of trees, we normalize the edit distance with
the total number of nodes from the two given trees. More
formally, the similarity metric is defined as follows.

Sim(T1, T2) =
dist(T1, T2)

NumOfNodes(T1) +NumOfNodes(T2)

where NumOfNodes(T1) and NumOfNodes(T1) repre-
sent the number of nodes of T1 and T2. By comparing
the values of Sim(SIG, PSIGv) and Sim(SIG, PSIGp),
we determine which version of the API, the one before or
after the vulnerability fix, is more similar to the target API.
However, similar to previous studies [14], [20], [21], [22],
merely comparing the relative similarity is insufficient to
definitively identify the presence of a vulnerability. When
both similarity values between the target API and the
vulnerability-related APIs are below a certain threshold,
we no longer rely on relative distance comparisons. We
introduce a similarity threshold t to filter out APIs unrelated
to the vulnerability. When Sim(SIG, PSIGv) < t and
Sim(SIG, PSIGp) < t, the target API can be considered
unrelated to the vulnerability. We selected nine threshold
values from 0.1 to 0.9 with a precision of 0.1 and validated
them on PATEN-BENCH shown in Table 1. The experimental
results show that the best matching performance is achieved
when the similarity threshold is set to 0.5.

4 IMPLEMENTATION

We implement PATEN to identify real-world unpatched
TPL APIs, comprising a total of 27,683 lines of code. This
paper primarily focuses on the detection of unpatched TPL
APIs in Java. In Section 5.6, we will discuss in detail the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

reasons and the extensibility of the proposed method. Figure
6 illustrates the architecture of the tool. The process begins
with the extraction of third-party APIs from the target project.
These APIs are then cross-referenced against the vulnerability
database to match their fully qualified names. If a match is
found, a target API signature is generated. Subsequently,
unpatched API detection and API usage detection are
conducted using the generated signatures, leading to the
generation of a bug report if vulnerable APIs are found to
be reachable within the application. Below, we detail the key
aspects of its implementation.
Vulnerability Database Construction. We construct a vul-
nerability database for PATEN that includes signatures for
known vulnerabilities and their patches. Access to compre-
hensive data on vulnerability fixes is crucial as the quality
and scope of this dataset directly affect our ability to detect
unpatched TPL APIs. To assemble a thorough and reliable
vulnerability dataset, we use Snyk [23], a leading security
platform, in conjunction with GitHub [24]. Snyk is preferred
over traditional vulnerability databases such as CVE and
NVD due to its integration of data from multiple sources,
which not only simplifies our data collection process but
also provides broader vulnerability coverage. Furthermore,
our interactions with the developers at Snyk have assured
us of the data’s integrity; it is rigorously analyzed, tested,
and enriched before inclusion, ensuring high quality and
reliability.

To systematically identify vulnerabilities and their corre-
sponding patches, we have automated our data collection
process as follows:
• We extracted Java vulnerabilities from the Snyk database

using the “Maven” filter.
• We confirmed the existence of patches (e.g., git commits,

pull requests) for each vulnerability and ensured the
source code was hosted on GitHub, recording relevant
URLs.

• Using git clone and git diff, we downloaded and
analyzed the modified code to determine which APIs were
affected by the patches, utilizing the tool Understand [34].
In summary, we collected data on 334 known vulnerabili-

ties along with their corresponding patches, impacting a total
of 1,701 APIs. We implemented the patch-enhanced AST-level
signature generation on the GUMTREE [35], which is a AST
differencing tool. We have open-sourced our vulnerability
dataset on GitHub1.
Third-party API Extraction. We firstly analyze the depen-
dency trees of Java projects using the MAVEN [36] build
system, which provides detailed insights into the libraries
and their versions used. Next, we employ the Java static
analysis tool SOOT [37] to extract the fully qualified names of
all APIs from third-party libraries, including API names,
parameter lists, parameter types, and return values. We
then use the fully qualified names to query a vulnerability
database for matching vulnerability-fixing patches, which
are used for subsequent vulnerability detection.
Vulnerability Detection. Vulnerability detection is divided
into two stages. In the first stage, we follow the most classical
tree edit distance algorithm [31] to identify unpatched

1. https://github.com/PATEN-Tool/PATEN_vuldb_info

APIs. In the second stage, our goal is to check whether an
unpatched TPL API is reachable from the application project.
As pointed out by prior studies [1], [4], this is important for
developers to ensure the security impacts of the unpatched
TPL APIs. The detailed process for detecting API usage is as
follows:

Initially, we verify whether the TPL containing the
unpatched API is loaded, by examining the configuration of
the build management tool. This step is crucial to address
the dependency conflict issues, identified in earlier research
[38], where an application may incorporate multiple versions
of the same library but only one is actually loaded. We utilize
the Maven Plugin API [39] to extract the library dependency
tree of the application project and dismiss any libraries not
loaded by MAVEN. If the TPL of the unpatched API passes
this filter, we employ SOOT [37] to construct a call graph for
the application project along with all TPLs included from
the initial filtering step. Utilizing the CHA mode of Soot,
we analyze call relationships across all methods in the TPLs,
integrating these into a comprehensive call graph. Beginning
from all public methods in the target project, a depth-first
search algorithm is executed to find paths that can reach the
vulnerable method. If a path is found, we generate a detailed
bug report documenting the use of this unpatched TPL API.

5 EVALUATION

Our evaluation is designed to answer the following research
questions:
• RQ1: How effective and efficient is PATEN at identifying

unpatched TPL APIs?
• RQ2: Does PATEN effectively detect and help diagnose

the use of unpatched TPL APIs in real-world projects?
• RQ3: How does patch-induced AST difference extraction

in PATEN help detect unpatched APIs?
• RQ4: How does vulnerability trace refinement in PATEN

help detect unpatched APIs?

5.1 Experimental Setting

Dataset Preparation. Due to the absence of a large-scale
dataset, we constructed a comprehensive dataset named
PATEN-DATASET. This dataset comprises two main com-
ponents: a vulnerability database and a benchmark dataset
named PATEN-BENCK, which includes APIs tagged with
their vulnerability statuses.
1) Vulnerability Database Construction: The vulnerability

database includes signatures for both vulnerable and
patched TPL APIs. This database aids in accurately
assessing whether a given TPL API has been patched,
as detailed in Section 4.

2) PATEN-BENCH Construction: To ensure a robust eval-
uation of PATEN and avoid the potential for overfitting,
we did not use API versions immediately before and after
patch applications as part of our test set. Instead, for each
TPL version associated with known vulnerabilities from
the vulnerability database, we collected all official release
versions of these TPLs. We then queried the Snyk database
to determine if these versions are classified as vulnerable
or patched with respect to the known vulnerabilities. The
results formed the PATEN-BENCH, a comprehensive list of
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30,389 API versions each labeled as vulnerable or patched,
which is detailed in Table 1. Due to space constraints, we
have only listed the top 50 third-party libraries, ranked
by the number of associated CVEs, in descending order of
the number of CVEs per library.

It should be noted that the baselines used in our evalu-
ation are not dependent on specific dataset sizes or sets
of vulnerabilities, and they do not rely on any imbal-
anced signature distribution. REDEBUG, VUDDY, MVP,
and MOVERY collected C++ vulnerabilities and security
patches from the National Vulnerability Database (NVD) [40]
as their vulnerability datasets. Due to confidentiality, their
vulnerability datasets have not been publicly released. On the
other hand, VISION collected 12,073 Java library versions
corresponding to 102 CVEs across 79 libraries from the
NVD [22]. It is important to highlight that the CVEs and
the number of versions in our dataset are more than twice
that of VISION, and our dataset nearly covers all of the
libraries used in VISION.

TABLE 1: The number of patched and unpatched TPLs used
in Github projects.

No. Vulnerable TPL Star/Forks #vulnerable #patched #total

1 tomcat-embed-core 7.4k/5k 1,129 3,530 4,659
2 tomcat-catalina 7.4k/5k 1,461 2,090 3,551
3 spring-oxm 56k/37.9k 329 2,062 2,391
4 tomcat-coyote 7.4k/5k 393 1,661 2,054
5 spring-web 56k/37.9k 249 979 1,228
6 keycloak-services 21.8k/6.6k 429 297 726
7 elasticsearch 69k/24.5k 371 255 626
8 postgresql 1.5k/835 314 285 599
9 undertow-core 3.6k/986 438 110 548
10 spring-security-web 8.7k/5.8k 194 329 523
11 activemq-all 2.3k/1.4k 112 396 508
12 solr-core 1.1k/636 348 159 507
13 ognl 216/77 35 360 395
14 activemq-broker 2.3k/1.4k 22 334 356
15 keycloak-model-jpa 21.8k/6.6k 193 144 337
16 activemq-client 2.3k/1.4k 78 259 337
17 spring-security-core 8.7k/5.8k 105 222 327
18 jetty-servlets 3.8k/1.9k 305 22 327
19 spring-messaging 56k/37.9k 93 227 320
20 phoenix-core 1k/998 87 168 255
21 spring-data-commons 766/664 85 166 251
22 async-http-client 6.3k/1.6k 241 0 241
23 rabbitmq-jms 62/49 74 159 233
24 hawtio-system 1.4k/540 145 88 233
25 hadoop-common 14.6k/8.8k 50 176 226
26 tomcat-catalina-jmx-remote 7.4k/5k 114 92 206
27 nifi-web-security 4.7k/2.7k 154 42 196
28 activemq-jaas 2.3k/1.4k 20 168 188
29 jruby-core 3.8k/922 12 173 185
30 resteasy-jaxrs 2/0 0 184 184
31 spring-security-crypto 8.7k/5.8k 96 80 176
32 vaadin-server 1.8k/729 90 74 164
33 artemis-openwire-protocol 932/917 152 12 164
34 spring-core 56k/37.9k 27 134 161
35 infinispan-server-rest 1.2k/628 91 70 161
36 orientdb-server 4.7k/869 41 116 157
37 jetty-http 3.8k/1.9k 12 144 156
38 jooby 1.7k/200 128 27 155
39 opencast-caption-impl 383/231 130 20 150
40 vertx-core 14.2k/2.1k 24 120 144
41 hive-exec 5.5k/4.7k 39 99 138
42 activemq-osgi 2.3k/1.4k 9 126 135
43 uimaj-core 63/37 70 63 133
44 jolokia-core 808/218 98 33 131
45 weld-core 382/285 129 0 129
46 weld-core-impl 382/285 128 0 128
47 struts2-core 1.3k/810 38 89 127
48 concord-server-impl 207/102 0 126 126
49 spring-cloud-dataflow-server-core 1.1k/578 105 21 126
50 coyote 7.4k/5k 50 76 126
51 others 2,599 2,186 4,785
Total 11,636 18,753 30,389

#vulnerable: the number of API versions that are vulnerable.
#patched: the number of API versions that are patched.

#total: the total number of API versions.

Baselines. We compare PATEN with six baselines based on
patch-enhanced matching approaches.

• REDEBUG [10] uses context-based code matching by
combining pre-patch and post-patch code snippets to
identify vulnerabilities.

• VUDDY [11] matches API signatures directly by replacing
and normalizing function signatures to detect vulnerabili-
ties.

• MVP [20] utilizes program slicing techniques to extract
relevant code related to vulnerabilities and compares them
with the target API.

• MOVERY [21] focuses on core code lines and function
collation to summarize key changes during updates,
creating concise vulnerability signatures.

• SECURESYNC [14] utilizes an enhanced AST with labels
to compare structural features of vulnerable code snip-
pets, providing reliable support for detecting recurring
vulnerabilities.

• VISION [22] prioritizes key changes and their contexts
through critical method selection and critical statement
identification, enabling accurate identification of the af-
fected library versions for vulnerabilities.

We clarify that the underlying principles of these base-
lines are language-agnostic. These methods aim to generate
vulnerability patch signatures through program analysis
techniques and are broadly applicable to the detection of
Java unpatched TPL APIs. However, to ensure fairness, we
also carefully considered the specific languages supported by
the implementations of these tools. REDEBUG is applicable
to Java, so we directly used its source code. VISION is
designed to detect vulnerable affected TPL versions in Java.
Since our focus is on Java unpatched APIs, we set the
critical methods in VISION as the TPL APIs we aim to
detect. VUDDY and MOVERY are designed for C++ code,
so we modified them to make them compatible with Java.
Since MVP is a proprietary tool, its source code is not
available. In our experiments, we endeavored to implement
and configure it based on the descriptions provided in its
original paper specifically for Java programs. We engaged
in multiple communications with the authors of MVP to
ensure that our implementation accurately reflected the
details described in the paper, and our tests confirmed that
it achieved the expected results. SECURESYNC’s source code
is also not available. We contacted the authors to inquire
whether they could share the source code, but we did not
receive a response. As a result, we replicated it for Java based
on the details described in the paper. To verify the correctness
of our implementation, we manually wrote test cases and
validated the output.

We do not compare PATEN with clone-based approaches
due to the significant limitations highlighted by MVP [20].
According to their findings, clone-based methods such as
SOURCERERCC [15] and CCALIGNER [16] exhibit extremely
low precision (0.5% and 0.3%, respectively) and moderate
recall (64.9% and 56.8%, respectively) when applied to the
task of identifying vulnerable functions. This demonstrates
that clone-based approaches are not well-suited for this type
of task, as they produce a large number of false positives.

Metrics. We employ several standard metrics to assess the
performance of PATEN including precision, recall, accuracy,
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and F1-measure. We first define the basic metrics as follows:

• True Positive (TP): the API identified as vulnerable is
actually vulnerable.

• False Positive (FP): the API identified as vulnerable but is
actually patched.

• True Negative (TN): the API identified as patched is
indeed patched.

• False Negative (FN): the API identified as patched but is
actually vulnerable.

Based on these basic metrics, we calculate the following
performance metrics: recall, precision, accuracy, and F1-
measure. Precision assesses the accuracy with which PATEN
detects vulnerable APIs. Recall measures the tool’s ability
to identify all vulnerable APIs. Accuracy reflects the overall
ability to correctly classify both vulnerable and patched APIs.
F1-measure provides a harmonic mean of precision and
recall.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + FP + TN + FN

F1−measure =
2× Precision×Recall

Precision+Recall

We also utilize the DTime to measure the detection
efficiency of PATEN. This metric represents the total time
taken to detect whether an API is unpatched including both
analysis time (the time required to generate the target API
signature and the vulnerability/patch API) and matching
time (the time spent searching for vulnerabilities in target
APIs).

Environment. We ran our experiments on a server with one
hundred and four “Intel(R) Xeon(R) Gold 6230R CPU @
2.10GHz” processors and 512GB of memory running Ubuntu
20.04.6 LTS.

5.2 Effectiveness and Efficiency
We applied PATEN and the baselines to identify unpatched
TPLs in PATEN-BENCK. The results are demonstrated in
Table 2.

Effectiveness. As shown in Table 2, PATEN demonstrates
strong effectiveness, achieving a high precision of 90.41%, a
recall of 93.96%, an accuracy of 93.87% and an F1-measure
of 92.15%. These results indicate that PATEN not only
detects unpatched TPL APIs with high accuracy but also
maintains a good balance between precision and recall. In
contrast, while some baseline approaches, such as VUDDY,
REDEBUG, MVP, and VISION, achieve a perfect precision
of 100%, this comes at the expense of significantly lower
recall. The low recall rates lead to much lower F1-measure
and accuracy scores, suggesting that these baselines fail
to detect a significant portion of unpatched TPL APIs
that our approach successfully identifies. The poor recall
performance of the baseline approaches can be attributed
to their reliance on statement-level signatures, which fail to
capture the critical vulnerable elements within a statement.
As a result, mismatches frequently occur between the target

API signature and the vulnerable API signature, limiting
their ability to identify vulnerabilities. Figure 7 shows
a concrete example where all baseline approaches miss
this vulnerable API, whereas PATEN successfully identifies
it. All baseline approaches, which rely on coarse-grained
representations, fail to match the modified line (Line 155
in Figure 7(a)) with Line 88 in Figure 7(b), leading to a
false negative. VUDDY, REDEBUG, MVP, and MOVERY use
hash values of code statements as signatures. Hash values
only match exactly when the textual content is identical,
which leads to mismatches due to non-critical elements, such
as the “final” keyword, in the target API’s vulnerable
code lines and the vulnerability patch. This results in false
negatives. VISION generates code semantic embeddings
using UniXcoder and computes the cosine similarity between
the target API and the vulnerability-related API. On the
other hand, SECURESYNC uses an enhanced AST to generate
vulnerability patch signatures, applying feature vectors to
assess textual and structural similarities in code trees. Both of
these methods, although utilizing different forms of feature
representation, rely on coarse-grained representations at the
statement level. They fail to eliminate the influence of non-
critical elements like “final”, leading to false negatives.
In the target API, such non-critical elements related to
vulnerabilities and patches are very common in Java APIs.
Changes in the target API code lead to code fragments that
are not exactly similar to those before and after the vulner-
ability fix. This type of API is present in PATEN-BENCH
at a rate of 39%. In contrast, PATEN adopts fine-grained
AST-level signatures, enabling the precise identification of
critical vulnerable elements , as shown in Figure 7(a) with the
example of “parse(token)”. This fine-grained approach
ensures that PATEN can effectively detect unpatched TPL
APIs that are missed by statement-level signature-based
methods. When comparing the overall performance, PATEN
clearly outperforms the baselines. In terms of accuracy,
PATEN surpasses VUDDY, REDEBUG, MVP, MOVERY,
VISION, and SECURESYNC by 51.3%, 51.4%, 49.0%, 51.9%,
9.7%, and 17.9%, respectively. Similarly, in terms of F1-
measure, PATEN outperforms these baselines by 5,321%,
3,364%, 1,300%, 3,586%, 20%, and 39%, respectively. This
significant improvement highlights the effectiveness of our
approach in identifying unpatched TPL APIs.

Efficiency. As shown by the AvgDTime column in Table 2,
the average detection time per API using PATEN is 796ms.
Although PATEN is not as efficient as some tools such as
VUDDY (617ms) and REDEBUG (609ms) in terms of detection
time, this is largely due to its use of fine-grained AST-level
signatures. PATEN performs tree edit distance calculations
to determine the closest match between the target API
and the vulnerabilities or patches, which incurs additional
computational overhead. Among the baselines, VISION
demonstrates the highest detection time at 196,830ms. This
is because it not only employs a pre-trained model, UniX-
coder [41], to generate semantic embedding vectors for each
statement but also generates a PDG using Joern [42]. The
forward and backward slicing on the PDG, based on changed
statements, further increases the detection time. Despite
requiring more time compared to certain baselines, PATEN
achieves a favorable trade-off between effectiveness and
efficiency. Its significantly higher Recall and F1-measure
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TABLE 2: Benchmark results of PATEN and baselines.

Tool TP FP TN FN Precision Recall Accuracy F1-measure AvgDTime(ms)

PATEN 10,933 1,160 17,593 703 90.41% 93.96% 93.87% 92.15% 796
VUDDY 100 0 18,753 11,536 100% 0.86% 62.04% 1.70% 617
REDEBUG 157 0 18,753 11,479 100% 1.35% 61.99% 2.66% 609
MVP 396 0 18,753 11,240 100% 3.40% 63.01% 6.58% 610
MOVERY 149 124 18,629 11,487 54.58% 1.28% 61.79% 2.50% 564
VISION 7,251 0 18,753 4,385 100% 62.32% 85.57% 76.78% 196,830
SECURESYNC 6,124 684 18,069 5,512 89.95% 52.63% 79.61% 66.41% 139

CVE Number: CVE-2021-29500

Bug Fix Commit: 13d8805331012abffe3282c03d47320e940f1861

154 public TokenPayload parseToken (String token) { 

155 - Map<String, Object> mapObj = (Map<String,Object>) Jwts.parserBuilder()

.setSigningKey(key).build().parse(token).getBody();

155 +  Map<String, Object> mapObj = (Map<String,Object>) Jwts.parserBuilder()

.setSigningKey(key).build().parseClaimsJws(token).getBody();

156 TokenPayload payload = BeanUtils.map2Object(mapObj, TokenPayload.class);

157 …

158   }

(a) Patch for fixing CVE-2021-29500

Target Version: 0.0.9

Is Vulnerable: True

87  public TokenPayload parseToken (String token) { 

88 final Map<String, Object> mapObj = (Map<String, Object>) 

Jwts.parserBuilder().setSigningKey(this.key).build().parse(token).getBody();

89 final TokenPayload payload = (TokenPayload) BeanUtils.map2Object((Map)mapObj, 

(Class)TokenPayload.class); 

90 …

91 }

(b) A vulnerable target TPL API (in bubble-fireworks-plugin-token 0.0.9) 

Fig. 7: An example of vulnerability-fixing patch and a target
API that is vulnerable. While all baseline approaches fail to
detect the vulnerability, PATEN successfully identifies it.

compared to other tools demonstrate its superior ability to
detect unpatched TPL APIs. Furthermore, the detection time
of PATEN remains within a reasonable overhead, making it
suitable for integration into IDEs for real-time vulnerability
detection.

Answer to RQ1: PATEN is highly effective at identify-
ing unpatched TPL APIs, outperforming the baseline
approaches in terms of recall and F1-measure. Moreover,
the detection time remains within a reasonable range,
highlighting its potential for integration into IDEs for
real-time vulnerability detection.

5.3 Usefulness
To evaluate the usefulness of PATEN, we employed it to
detect unpatched APIs in real-world scenarios. We applied
PATEN to approximately 1,500 Maven projects from GitHub,
selecting active projects with at least 20 forks or stars and
recent updates within the last three months. Table 3 presents
a summary of our efforts to assess the impact of PATEN in
real-world scenarios. In total, we detect and submit 82 bug
reports that are related to the usage of unpatched TPL APIs,
of which 71(86.59%) are fixed by developers and 11(13.41%)
are already confirmed.

Our analysis of the detected vulnerabilities highlighted
that many were addressed in newer versions of the corre-

Hi, In client_java-parent/simpleclient_vertx there is a dependency 
io.vertx:vertx-core:3.3.2 that calls the risk method.
CVE-2018-12537

After further analysis, in this project, the main Api called is 
<io.vertx.core.http.impl.Http2HeadersAdaptor: io.vertx.core.MultiMap 
add(java.lang.String,java.lang.String)>
Risk method repair link : GitHub
CVE Bug Invocation Path--
Path Length : 3
<io.vertx.core.http.impl.Http2HeadersAdaptor: io.vertx.core.MultiMap 
add(java.lang.String,java.lang.String)> 
<io.vertx.core.http.impl.Http2ServerResponseImpl: io.vertx.core.http.HttpServerResponse 
putHeader(java.lang.String,java.lang.String)> 
(io.vertx.core.http.impl.Http2ServerResponseImpl.java:[211]) in /.m2/repository/io/vertx/vertx-
core/3.3.2/vertx-core-3.3.2.jar 
<io.prometheus.client.vertx.MetricsHandler: void handle(io.vertx.ext.web.RoutingContext)> 
(io.prometheus.client.vertx.MetricsHandler.java:[81]) in /detect/unzip/client_java-parent-
0.11.0/simpleclient_vertx/target/classes 

Dependency tree--
[INFO] io.prometheus:simpleclient_vertx:bundle:0.11.0 
……
[INFO] +- io.vertx:vertx-web:jar:3.3.2:provided 
[INFO] | +- io.vertx:vertx-auth-common:jar:3.3.2:provided 
[INFO] | \- io.vertx:vertx-core:jar:3.3.2:provided 
……
[INFO] | \- com.fasterxml.jackson.core:jackson-annotations:jar:2.7.0:provided 

Suggested solutions:
Update dependency version to 3.5.4 or later

Thank you very much.

Vulnerable API

CVE vulnerability

Root cause

Dependency tree

Fixing suggestion

Fig. 8: An example of our detailed bug report.

sponding TPLs. However, developers often persisted in using
older versions either due to unawareness of the vulnerabili-
ties or neglect of the updates in the TPLs they incorporated
into their projects. Furthermore, some projects indirectly
depend on vulnerable TPLs, complicating developers’ ability
to identify the security risks. This oversight frequently leads
to the inadvertent introduction of vulnerabilities into projects
when using TPLs.

These bugs reported were swiftly confirmed or fixed, at-
tributed to our approach’s fine-grained design, which allows
for the provision of detailed root causes for each vulnerability.
For instance, Figure 8 showcases a bug report generated
by PATEN for the project client-java [43], illustrating the
effectiveness of our method in real-world applications.

Answer to RQ2: PATEN has proven useful in detecting
and diagnosing the use of unpatched TPL APIs across
various real-world projects, significantly aiding develop-
ers in addressing potential security risks.
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TABLE 3: Bug Reports: Vulnerable APIs Detected by PATEN
No. Project Name Bug ID Stars/Forks CVE ID Status

1 tutorials #11291 34.2k/53.6k CVE-2020-26258 Fixed
2 apollo #4755 28.1k/10.1k CVE-2022-25857 Confirmed
3 hutool #2999 26.4k/7.1k CVE-2022-25857 Fixed
4 litemall #497 18k/7k CVE-2018-1000613h Fixed
5 openapi-generator #15195 16.6k/5.3k CVE-2018-12537 Fixed
6 DataX #1088 13.5k/4.8k CVE-2020-13956 Fixed
7 deeplearning4j #9471 13k/4.9k CVE-2018-11771 Fixed
8 webmagic #1038 10.8k/4.1k CVE-2020-13956 Fixed
9 shardingsphere-elasticjob #2153 7.9k/3.3k CVE-2020-13956 Fixed

10 shardingsphere-elasticjob #1993 7.9k/3.3k CVE-2021-21290 Fixed
11 sofa-jraft #960 3.2k/1k CVE-2022-25857 Fixed
12 ShedLock #738 3k/442 CVE-2020-13956 Fixed
13 best-pay-sdk #131 2.8k/903 CVE-2020-13956 Fixed
14 webcam-capture #879 2.1k/1.1k CVE-2020-13956 Fixed
15 client_java #705 2k/739 CVE-2018-12537 Fixed
16 servicecomb-pack #723 1.9k/449 CVE-2021-21290 Fixed
17 docx4j #477 1.9k/1.2k CVE-2020-13956 Fixed
18 azure-sdk-for-java #34162 1.8k/1.7k CVE-2022-25857 Fixed
19 forest #54 1.3k/185 CVE-2020-13956 Fixed
20 inlong #7480 1.2k/420 CVE-2019-17563 Fixed
21 zstack #1287 1.2k/385 CVE-2018-11771 Fixed
22 xdocreport #500 1.1k/342 CVE-2019-12415 Fixed
23 datagear #10 931/275 CVE-2019-12415 Fixed
24 datagear #23 931/275 CVE-2022-31692 Fixed
25 alexa-skills-kit-sdk-for-java #297 805/753 CVE-2020-13956 Fixed
26 esper #251 791/250 CVE-2020-13956 Fixed
27 alibaba-rsocket-broker #220 722/156 CVE-2022-25857 Fixed
28 mendmix #17 664/289 CVE-2022-25857 Fixed
29 aem-core-wcm-components #2358 648/699 CVE-2020-9484 Fixed
30 jinjava #1049 601/151 CVE-2022-25857 Confirmed
31 infinitest #351 572/152 CVE-2020-15250 Fixed
32 Web-Karma #573 557/196 CVE-2020-13956 Fixed
33 vertx-guide-for-java-devs #95 544/191 CVE-2019-17640 Confirmed
34 aws-athena-query-federation #829 498/258 CVE-2020-13956 Fixed
35 nutzboot #236 487/141 CVE-2019-17638 Fixed
36 congomall #18 442/55 CVE-2022-25857 Fixed
37 cointrader #164 428/162 CVE-2019-0201 Fixed
38 helix #1890 423/207 CVE-2020-13956 Fixed
39 incubator-celeborn #1380 416/169 CVE-2022-25857 Fixed
40 spring-comparing-template-engines #105 411/113 CVE-2022-25857 Confirmed
41 joyrpc #20 404/167 CVE-2016-6345 Fixed
42 msf4j #589 363/357 CVE-2015-7940 Confirmed
43 camellia #98 356/90 CVE-2018-1000873 Fixed
44 core-geonetwork #6759 354/452 CVE-2020-13956 Fixed
45 vertx-microservices-workshop #48 321/200 CVE-2019-17640 Confirmed
46 webapp-runner #244 321/111 CVE-2020-9484 Fixed
47 boxable #241 301/137 CVE-2021-27807 Fixed
48 NCM2MP3 #9 278/54 CVE-2022-25845 Fixed
49 OpenAudioMc #306 267/90 CVE-2022-25857 Fixed
50 tbschedule #29 253/149 CVE-2019-0201 Fixed
51 rumble #1226 194/78 CVE-2022-25857 Fixed
52 h2gis #1338 191/65 CVE-2022-21724 Fixed
53 h2gis #1338 191/65 CVE-2022-26520 Fixed
54 JedAIToolkit #63 191/39 CVE-2020-13956 Fixed
55 wms-ruoyi #1 176/35 CVE-2021-36090 Fixed
56 scblogs #169 169/50 CVE-2022-25857 Fixed
57 FastBeeIM #2 141/39 CVE-2022-25857 Fixed
58 micro-integrator #2457 138/167 CVE-2016-6812 Confirmed
59 herd #499 134/41 CVE-2017-5645 Fixed
60 deegree3 #1208 127/98 CVE-2020-9484 Fixed
61 extdirectspring #171 119/62 CVE-2015-5211 Fixed
62 oxalis #550 105/81 CVE-2020-13956 Fixed
63 wicket-jquery-ui #339 92/58 CVE-2021-23937 Fixed
64 rocketmq-connect #434 90/99 CVE-2022-25845 Fixed
65 hdt-java #137 88/62 CVE-2018-11771 Fixed
66 BlackLab #419 85/51 CVE-2022-25857 Fixed
67 Stitching #70 83/61 CVE-2022-25857 Fixed
68 kungfu #2 81/61 CVE-2022-25845 Fixed
69 Kubernetes_eShop #14 63/51 CVE-2020-9484 Confirmed
70 californium.tools #86 59/56 CVE-2017-7656 Fixed
71 Qanary #154 52/24 CVE-2022-25857 Fixed
72 iBioSim #620 50/18 CVE-2020-13956 Confirmed
73 red5-plugins #37 48/77 CVE-2019-0231 Confirmed
74 vertx-kubernetes-workshop #21 41/29 CVE-2019-10174 Confirmed
75 jdcloud-sdk-java #274 37/41 CVE-2020-13956 Fixed
76 xlsmapper #117 30/9 CVE-2019-12415 Fixed
77 alcor #760 29/34 CVE-2020-13956 Fixed
78 helidon-build-tools #850 29/34 CVE-2020-13956 Fixed
79 newrelic-unix-monitor #55 27/18 CVE-2020-13956 Fixed
80 incubator-hugegraph-commons #109 26/37 CVE-2020-15250 Fixed
81 poc-spring-with-webapp-gestionmateriel #39 23/38 CVE-2022-25857 Fixed
82 basyx-java-sdk #276 22/27 CVE-2021-36090 Fixed

5.4 Contribution of Patch-induced AST Difference Ex-
traction

To evaluate the contribution of patch-induced AST dif-
ference extraction in enhancing patch-enhanced AST-level
signatures, we conducted an experiment comparing PATEN
and PATEN-NoPID, which omits the patch-induced AST
difference extraction step. PATEN-NoPID directly uses
the vulnerability and patch statements as the AST-level
signatures without extracting critical vulnerable elements
through the difference extraction process. Table 4 shows

TABLE 4: Performance improvement between PATEN and
PATEN-NoPID.

Tool PATEN-NoPID PATEN Improvement
Precision 100% 90.41% 9.59% ↓
Recall 0.21% 93.96% 44,857.14% ↑
Accuracy 61.79% 93.87% 51.95% ↑
F1-measure 0.43% 92.15% 21,488.37% ↑

the improvement between PATEN and PATEN-NoPID in
PATEN-BENCH. The inclusion of patch-induced AST dif-
ference extraction in PATEN results in notable improve-
ments across all key metrics. Specifically, precision decreases
by 9.59%(= (90.41% − 100%)/100%), recall increases by
44, 857.14%(= (93.96%−0.21%)/0.21%), accuracy increases
by 51.95%(= (93.87%− 61.79%)/61.79%), and F1-measure
increases by 21, 488.37%(= (92.15%− 0.43%)/0.43%).

PATEN utilizes patch-induced AST difference extraction
to effectively capture minor code changes related to vul-
nerability fixes. This enables a more accurate identification
of critical vulnerable elements within patches. By focusing
on the differences in AST structure, including changes
in node types, variable names, and other key elements,
we can more precisely localize vulnerability modifications.
This method helps avoid the inclusion of irrelevant code
changes and ensures that the extracted patch signatures are
directly tied to the vulnerability fix. In contrast, PATEN-
NoPID does not leverage this extraction, which may lead
to less accurate localization of critical changes. This results
in PATEN-NoPID being highly sensitive to irrelevant code
changes, significantly reducing recall and F1-measure.

Answer to RQ3: Patch-induced AST difference extrac-
tion in PATEN helps detect unpatched APIs by analyzing
critical code changes specific to vulnerability fixes,
allowing for precise identification of unpatched elements
within the target API.

5.5 Contribution of Vulnerability Trace Refinement

To evaluate the contribution of vulnerability trace refine-
ment in enhancing patch-enhanced AST-level signatures, we
conducted an experiment comparing PATEN and PATEN-
NoVTR, which omits the vulnerability trace refinement
step. Table 5 shows the improvement between PATEN
and PATEN-noVTR in PATEN-BENCH. The inclusion of
vulnerability trace refinement in PATEN results in notable
improvements across all key metrics. Specifically, preci-
sion increases by 6.24%(= (90.41% − 85.10%)/85.10%) ,
recall by 5.22%(= (93.96%− 89.30%)/89.30%), accuracy by
4.40%(= (93.87% − 89.90%)/89.90%) and F1-measure by
5.92%(= (92.15%− 87.00%)/87.00%).

PATEN incorporates program slicing to extract relevant
variable context subtrees within differential subtrees, fo-
cusing specifically on the def-use relationship of variables
that contribute to vulnerabilities. For instance, user inputs
typically require some form of sanitization before use to
prevent malicious injection attacks. To fix such vulnerabilities,
additional validation steps are usually inserted between the
point of input acquisition and its usage. In this case, the
definition-use relationship forms the condition under which
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TABLE 5: Performance improvement between PATEN and
PATEN-noVTR.

Tool PATEN-NoVTR PATEN Improvement
Precision 85.10% 90.41% 6.24% ↑
Recall 89.30% 93.96% 5.22% ↑
Accuracy 89.90% 93.87% 4.40% ↑
F1-measure 87.00% 92.15% 5.92% ↑

the vulnerability arises, where the definition part occurs
before the validation fragment, and the use part follows
it. This approach selectively includes only the variable
definition prior to the vulnerability patch and the variable
usage after it, thereby reducing unnecessary context and
minimizing time costs. In contrast, PATEN-NoVTR does not
utilize this refinement, potentially leading to a less targeted
analysis.

Answer to RQ4: Vulnerability trace refinement in PATEN
significantly enhances patch-enhanced AST-level signa-
tures, leading to improved detection of unpatched APIs.

5.6 Discussion

Scalability analysis. In this section, we evaluate the speed
and scalability of PATEN in unpatched TPL API discovery.
We break down the total time required to discover unpatched
TPL APIs into three main components: preprocessing time
(the time taken for third-party API extraction), unpatched
API detection time (which includes signature generation
and matching), and reachability analysis time (the time for
API usage detection). Since our task differs from that of the
baseline architectures, and we have already discussed the
unpatched API detection time for these tools in Section 5.2,
we focus here on the specific components of PATEN and
their scalability.

We analyzed the detection times for 79 projects that were
identified as using unpatched TPL APIs, as shown in Table
3 (including 3 duplicate projects). The lines of code of these
projects range from 765 to 789,774. Table 6 presents the time
breakdown for unpatched TPL API discovery. The column
AvgT represents the average time taken for each component,
while the column MaxT represents the maximum time
observed. The preprocessing step takes the longest, with
an average time of 94.5 seconds and a maximum of 476.4
seconds, mainly due to the time required for decompiling
Java projects. In contrast, the unpatched API detection
and reachability analysis steps are significantly faster, with
average times of 760.81ms and 105.17ms, respectively. These
components contribute minimally to the overall process-
ing time, ensuring scalability and efficiency in large-scale
projects.

TABLE 6: Time Breakdown for Unpatched TPL API Discov-
ery

Component AvgT MaxT
Preprocessing 94.5s 476.4s

Unpatched API Detection 760.81ms 1,543.32ms
Reachability Analysis 105.17ms 460.81ms

Extensibility. To detect unpatched TPL APIs, we need to
match the code snippets of TPL APIs with the corresponding

vulnerability-fixing patch to determine whether the API is
vulnerable. This paper focuses on the detection of unpatched
TPL APIs in Java because Java bytecode, which is platform-
independent and can be decompiled back into source code
with minimal structural changes, makes it easier to extract
unified features for vulnerability detection. This consistency
allows for reliable code matching across different platforms.
In contrast, C/C++ TPLs are typically compiled into machine-
specific binaries, and decompiling them results in significant
structural changes. The process is not symmetric, making
it much harder to extract consistent TPL source code for
vulnerability detection.

Impact of node weight. Inspired by VISION [22], we
introduce node weighting to incorporate the frequency
differences between nodes in vulnerable and patched API
ASTs. The rationale behind this is to emphasize the impor-
tance of nodes that undergo significant changes, reflecting
their contribution to the vulnerability fix. However, it is
important to note that this node weighting mechanism is not
the primary contribution of our paper. In our experiments
using the PATEN-BENCH, the impact of node weighting on
performance improvement was minimal, suggesting that the
tree edit distance itself, rather than the weighting, plays a
more crucial role in detecting unpatched APIs. Nonetheless,
we believe that node weighting could be beneficial for future
vulnerability detection systems, particularly when dealing
with more complex or subtle vulnerabilities where frequency
differences may better highlight critical changes.

Contribution and novelty. While existing tools, such as
SECURESYNC [14] and VISION [22], also utilize ASTs to
represent critical vulnerable code segments, they operate
at a coarse-grained level, focusing on entire statement-level
subtrees or larger code blocks. No previous studies have
explicitly targeted individual node elements within the
AST to capture fine-grained vulnerability characteristics. In
contrast, our approach introduces a patch-enhanced AST-
level signature, which precisely isolates and identifies critical
vulnerable elements by extracting and refining node-level
changes. By incorporating patch-Induced AST difference
extraction and vulnerability trace refinement, we enhance
the sensitivity of vulnerability detection, allowing for the
identification of nuanced code modifications that directly ad-
dress vulnerabilities. This fine-grained analysis significantly
improves the accuracy of detecting unpatched APIs and
better localizes the vulnerability fix.

6 LIMITATIONS OF PATEN
Despite PATEN’s advanced capabilities in identifying a
significant number of unpatched TPL APIs beyond what
is possible with current state-of-the-art tools, there are still
instances where it can generate False Negatives and False
Positives. We explore these scenarios through two specific
examples.

False Negatives Produced by PATEN. While PATEN signifi-
cantly reduces the number of missed vulnerabilities, about
8% of unpatched TPL APIs still elude detection, especially
when APIs contain many similarly structured statements.
This limitation, inherent in methods that rely on structural
similarity for clone detection, is illustrated in Figure 9.
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CVE Number:CVE-2015-3192
Bug Fix Commit: 5a711c05ec750f069235597173084c2ee796242    
804  private Source processSource(final Source source) {

······
831       if (xmlReader == null) {
832           xmlReader = XMLReaderFactory.createXMLReader();
833       }             
834 +     xmlReader.setFeature("http://apache.org/xml/features/disallow-doctype-
                    decl", !isSupportDtd());
835       String name = "http://xml.org/sax/features/external-general-entities";
836       xmlReader.setFeature(name, isProcessExternalEntities());

······
846  }

Target Version: 4.0.4.RELEASE
Is Vulnerable: True
505  private Source processSource(final Source source) {

······
529       if (xmlReader == null) {
530           xmlReader = XMLReaderFactory.createXMLReader();
531       }
532       xmlReader.setFeature("http://xml.org/sax/features/external-general-
                    entities", this.isProcessExternalEntities());

······
539  }

(a) Patch for fixing CVE-2015-3192

(b) A target API(in spring-web 4.0.4.RELEASE) that has Vulnerability

Fig. 9: A false negative produced by PATEN.

CVE Number: CVE-2020-10719

Bug Fix Commit: aa5e1fe11fec75032f14f0ae23e586f4cf3a3365

65     public void handleRequest(final HttpServerExchange exchange) throws Exception {                           

66            if (HttpContinue.requiresContinueResponse(exchange)) {

67 exchange.addRequestWrapper(WRAPPER);

68  - exchange.addResponseCommitListener(NULL)

68 +           exchange.addResponseCommitListener(new ResponseCommitListener() {

69 +               @Override

70 +               public void beforeCommit(HttpServerExchange exchange) {

71 +                     if (!HttpContinue.isContinueResponseSent(exchange)) {

72 +                     exchange.setPersistent(false);

73 +                     IoUtils.safeClose(exchange.getRequestChannel());

74 +                     }

75 +               }

76 +             });

77 } 

78 handler.handleRequest(exchange); 

79 }

Target Version: 2.2.6

Is Vulnerable: False

62      public void handleRequest(final HttpServerExchange exchange) throws Exception {       

63         if (HttpContinue.requiresContinueResponse(exchange)) {

64 exchange.addRequestWrapper(HttpContinueReadHandler.WRAPPER);

65 exchange.addResponseCommitListener(this.createResponseCommitListener());

65         }

66         handler.handleRequest(exchange);

67     } 

(b) A target API(in undertow-core 2.2.6) that has been patched

(a) Patch for fixing CVE-2020-10719

Fig. 10: A false positive produced by PATEN.

Figure 9(b) shows the TPL code used in a project named
spring, which remains unpatched as Line 532 in Figure 9(b)
replicates the vulnerable code at Line 836 in Figure 9(a).
However, due to the structural similarity with the patched
code (Line 834 in Figure 9(a)), it was misclassified as patched,
leading to a false negative.

False Positives Produced by PATEN. PATEN also gener-
ates some false positives, particularly when projects have
replaced a vulnerable TPL with a patched version but have
further modified it based on specific requirements. As a
result, these revisions might be misinterpreted as indications
of vulnerabilities. As shown in Figure 10(a), the official
patch applies addResponseCommitListener with a di-
rect instantiation of new ResponseCommitListener()

to define the behavior of the listener explicitly. However,
as shown in Figure 10(b), the target code customizes the
patch by replacing the direct instantiation with the method
call this.createResponseCommitListener(), which
generates the listener indirectly. However, PATEN does not
perform inter-program analysis during preprocessing, and
thus cannot resolve the behavior and return value of the
method this.createResponseCommitListener(). As
a result, PATEN incorrectly assumes that the target API is
more similar to the vulnerable API, leading to a false positive.
Addressing such cases will involve further analysis of the
function calls, which is planned for future enhancements of
PATEN.
Threats to Validity. The validity of our approach could be
compromised by the accuracy and completeness of the Snyk
platform and other public security sources, which might
limit the scope and precision of detected vulnerabilities.
Additionally, the limited experimental dataset may not
comprehensively represent real-world scenarios, affecting
the generalizability and transferability of our results.
Future Work. Moving forward, we intend to enhance the
capabilities of PATEN by further refining the AST-level
signatures to improve the detection of subtle vulnerabil-
ities. Additionally, we plan to extend our approach to a
wider range of programming languages and evaluate its
effectiveness across various software ecosystems.

7 RELATED WORK

Code Clone Detection. General techniques for code clone
detection, referred to as clone-based approaches in this paper,
aim to identify four types of code clones [44], [45], [46]: Type-I
and Type-II, which are code snippets that are identical except
for variations in spaces, comments, or variable names being
renamed [19], [47], [48], [49], [50], [51], [52]; Type-III, which
are nearly identical code snippets with a few statements
added or deleted [15], [16], [53], [54], [55], [56], [57]; and Type-
IV, which are code snippets that perform the same function
but have different syntactic structures [17], [58], [59], [60],
[61], [62], [63]. While existing techniques for these types are
effective in general settings, this paper argues that they often
fail to differentiate minor differences between vulnerable
code and its patched versions, thus leading to significant
false positives when used for vulnerability detection.

Beyond these traditional techniques, several other clone
detection methods are designed for vulnerability discovery
but do not capitalize on the insights provided by patches. For
instance, CP-Miner and its enhanced versions aim to detect
bugs by identifying inconsistencies between code clones [64],
[65], [66]. SecureSync utilizes extended abstract syntax trees
and graph models to represent code snippets, employing
these graph representations to identify code reported as vul-
nerable [14]. Similarly, SCVD employs tree-based matching to
detect vulnerable code clones [67], while CBCD detects bugs
by generating program dependence graphs and identifying
isomorphic sub-graphs [12]. Unlike these techniques, our
method fully utilizes patch information, gaining a more
detailed and precise understanding of the structural changes
caused by patches, thus enabling more effective detection
of subtle vulnerabilities that these traditional methods may
overlook.
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Patch-enhanced Code Clone Detection. To recognize the
subtle differences between vulnerable code and its patched
versions, previous approaches have attempted to leverage
features from both versions [10], [11], [14], [20], [21], [22].
For example, MVP [20] applies program slicing techniques
to extract code relevant to vulnerabilities, which are then
compared with the target API. MOVERY [21], on the other
hand, emphasizes core code lines and function collation
to distill key changes during updates, thereby generating
concise vulnerability signatures. However, these methods
primarily rely on hashing algorithms to encode statement-
level characteristics into signatures, but this coarse-grained
approach struggles to differentiate between critical and non-
critical elements within statements, limiting their accuracy in
detecting nuanced vulnerabilities. Unlike these approaches,
our method utilizes patch-enhanced AST-level signatures to
detect vulnerabilities.
Learning-based Bug Detection. Our approach is related to
learning-based bug detection techniques [10], [12], [13], [14],
[68], [69] and binary similarity analysis [70], [71], [72], [73],
[74], [75], [76]. Learning-based bug detectors typically utilize
graph-based representations of code, which are encoded
into feature vectors for training machine learning models to
classify code as either vulnerable or safe. These models differ
from our method, which does not rely on machine learning
but rather utilizes direct analysis of code structure and patch
information. Conversely, binary similarity analysis operates
without access to source code, analyzing binaries directly.
This method faces unique challenges due to the lack of rich
source code information, making it fundamentally different
from our source-level approach. This distinction highlights
our method’s ability to directly analyze and utilize specific
source code features and patch data, providing a distinct
advantage over binary-level analysis.

8 CONCLUSION

In this paper, we have introduced PATEN, a novel approach
designed to identify unpatched TPL APIs effectively. By
leveraging a fine-grained, patch-enhanced AST-level signa-
ture, PATEN significantly surpasses existing state-of-the-art
methods in both effectiveness and utility. Our comprehensive
evaluations demonstrate the effectiveness and usefulness of
PATEN, which has successfully detected 82 critical bugs
associated with the use of unpatched TPL APIs in various
open-source projects. The source code of PATEN is available
at https://github.com/PATEN-Tool/PATEN.
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